Department of Mechanical Engineering, Pohang University of Science and Technology, San 31, Pohang, Gyeongbuk, Republic of Korea.
Nanoscale. 2014 Aug 21;6(16):9681-8. doi: 10.1039/c4nr00350k. Epub 2014 Jul 4.
Nanofabrication technologies have been a strong advocator for new scientific fundamentals that have never been described by traditional theory, and have played a seed role in ground-breaking nano-engineering applications. In this study, we fabricated ultra-high-aspect (∼10(6) with O(100) nm nanochannel opening and O(100) mm length) orthogonal nanochannel array using only polymeric materials. Vertically aligned nanochannel arrays in parallel can be stacked to form a dense nano-structure. Due to the flexibility and stretchability of the material, one can tune the size and shape of the nanochannel using elongation and even roll the stack array to form a radial-uniformly distributed nanochannel array. The roll can be cut at discretionary lengths for incorporation with a micro/nanofluidic device. As examples, we demonstrated ion concentration polarization with the device for Ohmic-limiting/overlimiting current-voltage characteristics and preconcentrated charged species. The density of the nanochannel array was lower than conventional nanoporous membranes, such as anodic aluminum oxide membranes (AAO). However, accurate controllability over the nanochannel array dimensions enabled multiplexed one microstructure-on-one nanostructure interfacing for valuable biological/biomedical microelectromechanical system (BioMEMS) platforms, such as nano-electroporation.
纳米制造技术一直是新科学原理的有力倡导者,这些原理从未被传统理论所描述,并在开创性的纳米工程应用中发挥了种子作用。在这项研究中,我们仅使用聚合物材料制造了超高纵横比(约 10(6),纳米通道开口为 O(100)nm,长度为 O(100)mm)的正交纳米通道阵列。垂直排列的纳米通道阵列可以平行堆叠以形成密集的纳米结构。由于材料的柔韧性和可拉伸性,可以通过拉伸来调整纳米通道的大小和形状,甚至可以将堆叠阵列卷起以形成径向均匀分布的纳米通道阵列。可以根据需要将卷切成任意长度,与微/纳流控装置结合使用。例如,我们使用该装置演示了离子浓度极化,以获得欧姆限制/过限制电流-电压特性和浓缩带电物质。纳米通道阵列的密度低于传统的纳米多孔膜,如阳极氧化铝膜(AAO)。然而,对纳米通道阵列尺寸的精确可控性使得可以对一个微结构进行复用-与一个纳米结构进行接口连接,从而为有价值的生物/生物医学微机电系统(BioMEMS)平台,如纳米电穿孔,提供了平台。