Vascular Physiology Group, Department of Cell Biology and Physiology, University of New Mexico Health Sciences Center, Albuquerque, New Mexico.
Vascular Physiology Group, Department of Cell Biology and Physiology, University of New Mexico Health Sciences Center, Albuquerque, New Mexico
Am J Physiol Lung Cell Mol Physiol. 2014 Sep 1;307(5):L419-30. doi: 10.1152/ajplung.00095.2014. Epub 2014 Jul 3.
Our laboratory shows that acid-sensing ion channel 1 (ASIC1) contributes to the development of hypoxic pulmonary hypertension by augmenting store-operated Ca(2+) entry (SOCE) that is associated with enhanced agonist-induced vasoconstriction and arterial remodeling. However, this enhanced Ca(2+) influx following chronic hypoxia (CH) is not dependent on an increased ASIC1 protein expression in pulmonary arterial smooth muscle cells (PASMC). It is well documented that hypoxic pulmonary hypertension is associated with changes in redox potential and reactive oxygen species homeostasis. ASIC1 is a redox-sensitive channel showing increased activity in response to reducing agents, representing an alternative mechanism of regulation. We hypothesize that the enhanced SOCE following CH results from removal of an inhibitory effect of hydrogen peroxide (H2O2) on ASIC1. We found that CH increased PASMC superoxide (O2 (·-)) and decreased rat pulmonary arterial H2O2 levels. This decrease in H2O2 is a result of decreased Cu/Zn superoxide dismutase expression and activity, as well as increased glutathione peroxidase (GPx) expression and activity following CH. Whereas H2O2 inhibited ASIC1-dependent SOCE in PASMC from control and CH animals, addition of catalase augmented ASIC1-mediated SOCE in PASMC from control rats but had no further effect in PASMC from CH rats. These data suggest that, under control conditions, H2O2 inhibits ASIC1-dependent SOCE. Furthermore, H2O2 levels are decreased following CH as a result of diminished dismutation of O2 (·-) and increased H2O2 catalysis through GPx-1, leading to augmented ASIC1-dependent SOCE.
我们的实验室表明,酸感应离子通道 1(ASIC1)通过增强储存操纵的 Ca2+内流(SOCE),促进低氧性肺动脉高血压的发展,这种 SOCE 与增强的激动剂诱导的血管收缩和动脉重塑有关。然而,慢性低氧(CH)后这种增强的 Ca2+内流并不依赖于肺动脉平滑肌细胞(PASMC)中 ASIC1 蛋白表达的增加。有充分的文献证明,低氧性肺动脉高血压与氧化还原电势和活性氧物种平衡的变化有关。ASIC1 是一种对还原剂表现出活性增强的氧化还原敏感通道,代表了一种替代的调节机制。我们假设 CH 后 SOCE 的增强是由于过氧化氢(H2O2)对 ASIC1 的抑制作用被去除。我们发现 CH 增加了 PASMC 超氧化物(O2(·-))并降低了大鼠肺动脉 H2O2 水平。H2O2 水平的降低是由于 CH 后 Cu/Zn 超氧化物歧化酶表达和活性的降低以及谷胱甘肽过氧化物酶(GPx)表达和活性的增加所致。虽然 H2O2 抑制了来自对照和 CH 动物的 PASMC 中的 ASIC1 依赖性 SOCE,但在来自对照大鼠的 PASMC 中添加过氧化氢酶增强了 ASIC1 介导的 SOCE,但对来自 CH 大鼠的 PASMC 没有进一步影响。这些数据表明,在对照条件下,H2O2 抑制了 ASIC1 依赖性 SOCE。此外,CH 后 H2O2 水平降低,是由于 O2(·-)的歧化减少和通过 GPx-1 增加 H2O2 催化作用所致,导致增强的 ASIC1 依赖性 SOCE。