文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

慢性缺氧诱导的肺动脉高压中的血管收缩机制:氧化信号的作用

Vasoconstrictor Mechanisms in Chronic Hypoxia-Induced Pulmonary Hypertension: Role of Oxidant Signaling.

作者信息

Yan Simin, Resta Thomas C, Jernigan Nikki L

机构信息

Vascular Physiology Group, Department of Cell Biology and Physiology, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA.

出版信息

Antioxidants (Basel). 2020 Oct 15;9(10):999. doi: 10.3390/antiox9100999.


DOI:10.3390/antiox9100999
PMID:33076504
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC7602539/
Abstract

Elevated resistance of pulmonary circulation after chronic hypoxia exposure leads to pulmonary hypertension. Contributing to this pathological process is enhanced pulmonary vasoconstriction through both calcium-dependent and calcium sensitization mechanisms. Reactive oxygen species (ROS), as a result of increased enzymatic production and/or decreased scavenging, participate in augmentation of pulmonary arterial constriction by potentiating calcium influx as well as activation of myofilament sensitization, therefore mediating the development of pulmonary hypertension. Here, we review the effects of chronic hypoxia on sources of ROS within the pulmonary vasculature including NADPH oxidases, mitochondria, uncoupled endothelial nitric oxide synthase, xanthine oxidase, monoamine oxidases and dysfunctional superoxide dismutases. We also summarize the ROS-induced functional alterations of various Ca and K channels involved in regulating Ca influx, and of Rho kinase that is responsible for myofilament Ca sensitivity. A variety of antioxidants have been shown to have beneficial therapeutic effects in animal models of pulmonary hypertension, supporting the role of ROS in the development of pulmonary hypertension. A better understanding of the mechanisms by which ROS enhance vasoconstriction will be useful in evaluating the efficacy of antioxidants for the treatment of pulmonary hypertension.

摘要

长期缺氧暴露后肺循环阻力升高会导致肺动脉高压。通过钙依赖性和钙敏化机制增强肺血管收缩,促成了这一病理过程。由于酶促生成增加和/或清除减少,活性氧(ROS)通过增强钙内流以及激活肌丝敏化参与肺动脉收缩增强,从而介导肺动脉高压的发展。在此,我们综述了慢性缺氧对肺血管系统内ROS来源的影响,这些来源包括NADPH氧化酶、线粒体、解偶联的内皮型一氧化氮合酶、黄嘌呤氧化酶、单胺氧化酶和功能失调的超氧化物歧化酶。我们还总结了ROS诱导的各种参与调节钙内流的钙通道和钾通道以及负责肌丝钙敏感性的Rho激酶的功能改变。已证明多种抗氧化剂在肺动脉高压动物模型中具有有益的治疗作用,支持了ROS在肺动脉高压发展中的作用。更好地理解ROS增强血管收缩的机制将有助于评估抗氧化剂治疗肺动脉高压的疗效。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/db5f/7602539/2db2a06542ec/antioxidants-09-00999-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/db5f/7602539/c92bc5e8b832/antioxidants-09-00999-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/db5f/7602539/2721a977c46e/antioxidants-09-00999-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/db5f/7602539/3b3436d6e650/antioxidants-09-00999-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/db5f/7602539/99fd96d6cda2/antioxidants-09-00999-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/db5f/7602539/3fdfb2e2c21c/antioxidants-09-00999-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/db5f/7602539/2db2a06542ec/antioxidants-09-00999-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/db5f/7602539/c92bc5e8b832/antioxidants-09-00999-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/db5f/7602539/2721a977c46e/antioxidants-09-00999-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/db5f/7602539/3b3436d6e650/antioxidants-09-00999-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/db5f/7602539/99fd96d6cda2/antioxidants-09-00999-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/db5f/7602539/3fdfb2e2c21c/antioxidants-09-00999-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/db5f/7602539/2db2a06542ec/antioxidants-09-00999-g006.jpg

相似文献

[1]
Vasoconstrictor Mechanisms in Chronic Hypoxia-Induced Pulmonary Hypertension: Role of Oxidant Signaling.

Antioxidants (Basel). 2020-10-15

[2]
Enhanced depolarization-induced pulmonary vasoconstriction following chronic hypoxia requires EGFR-dependent activation of NAD(P)H oxidase 2.

Antioxid Redox Signal. 2012-10-18

[3]
Actin polymerization contributes to enhanced pulmonary vasoconstrictor reactivity after chronic hypoxia.

Am J Physiol Heart Circ Physiol. 2018-1-26

[4]
Raisanberine protected pulmonary arterial rings and cardiac myocytes of rats against hypoxia injury by suppressing NADPH oxidase and calcium influx.

Acta Pharmacol Sin. 2012-5

[5]
Contribution of reactive oxygen species to the pathogenesis of pulmonary arterial hypertension.

PLoS One. 2017-6-30

[6]
Physiological redox signalling and regulation of ion channels: implications for pulmonary hypertension.

Exp Physiol. 2017-9-1

[7]
PKCβ and reactive oxygen species mediate enhanced pulmonary vasoconstrictor reactivity following chronic hypoxia in neonatal rats.

Am J Physiol Heart Circ Physiol. 2020-1-10

[8]
Oxygen sensing and signal transduction in hypoxic pulmonary vasoconstriction.

Eur Respir J. 2015-10-22

[9]
Reactive oxygen species mediate RhoA/Rho kinase-induced Ca2+ sensitization in pulmonary vascular smooth muscle following chronic hypoxia.

Am J Physiol Lung Cell Mol Physiol. 2008-9

[10]
Artemisinin and Its Derivate Alleviate Pulmonary Hypertension and Vasoconstriction in Rodent Models.

Oxid Med Cell Longev. 2022

引用本文的文献

[1]
Eleutheroside B Ameliorates Cardiomyocytes Necroptosis in High-Altitude-Induced Myocardial Injury via Nrf2/HO-1 Signaling Pathway.

Antioxidants (Basel). 2025-2-7

[2]
Hypoxia-Induced Mitochondrial ROS and Function in Pulmonary Arterial Endothelial Cells.

Cells. 2024-11-1

[3]
MicroRNA-210 mediates hypoxia-induced pulmonary hypertension by targeting mitochondrial bioenergetics and mtROS flux.

Acta Physiol (Oxf). 2024-9

[4]
Contribution of Mitochondrial Reactive Oxygen Species to Chronic Hypoxia-Induced Pulmonary Hypertension.

Antioxidants (Basel). 2023-11-30

[5]
Prostaglandin and prostaglandin receptors: present and future promising therapeutic targets for pulmonary arterial hypertension.

Respir Res. 2023-11-1

[6]
Do reactive oxygen species damage or protect the heart in ischemia and reperfusion? Analysis on experimental and clinical data.

J Biomed Res. 2023-7-28

[7]
Mechanism of Hypoxia-Mediated Smooth Muscle Cell Proliferation Leading to Vascular Remodeling.

Biomed Res Int. 2022

[8]
Hypoxia-induced pulmonary hypertension upregulates eNOS and TGF-β contributing to sex-linked differences in mutant mice.

Pulm Circ. 2022-10-1

[9]
Insight Into Rho Kinase Isoforms in Obesity and Energy Homeostasis.

Front Endocrinol (Lausanne). 2022

[10]
Preliminary Findings on the Effect of Ultrasmall Superparamagnetic Iron Oxide Nanoparticles and Acute Stress on Selected Markers of Oxidative Stress in Normotensive and Hypertensive Rats.

Antioxidants (Basel). 2022-4-9

本文引用的文献

[1]
Coupling of store-operated calcium entry to vasoconstriction is acid-sensing ion channel 1a dependent in pulmonary but not mesenteric arteries.

PLoS One. 2020-7-23

[2]
The Determining Role of Mitochondrial Reactive Oxygen Species Generation and Monoamine Oxidase Activity in Doxorubicin-Induced Cardiotoxicity.

Antioxid Redox Signal. 2021-3-1

[3]
Mechanisms underlying selective coupling of endothelial Ca signals with eNOS vs. IK/SK channels in systemic and pulmonary arteries.

J Physiol. 2020-9

[4]
Modulation of acid-sensing ion channels by hydrogen sulfide.

Biochem Biophys Res Commun. 2020-6-18

[5]
Norepinephrine Induces Lung Microvascular Endothelial Cell Death by NADPH Oxidase-Dependent Activation of Caspase-3.

Oxid Med Cell Longev. 2020-2-12

[6]
Extracellular Superoxide Dismutase Regulates Early Vascular Hyaluronan Remodeling in Hypoxic Pulmonary Hypertension.

Sci Rep. 2020-1-14

[7]
Prognostic Value of Oxidative Stress Markers in Patients with Pulmonary Arterial or Chronic Thromboembolic Pulmonary Hypertension.

Oxid Med Cell Longev. 2019-12-18

[8]
PKCβ and reactive oxygen species mediate enhanced pulmonary vasoconstrictor reactivity following chronic hypoxia in neonatal rats.

Am J Physiol Heart Circ Physiol. 2020-1-10

[9]
TRPV4 channel mediates adventitial fibroblast activation and adventitial remodeling in pulmonary hypertension.

Am J Physiol Lung Cell Mol Physiol. 2019-11-6

[10]
Regulation of mitochondrial fragmentation in microvascular endothelial cells isolated from the SU5416/hypoxia model of pulmonary arterial hypertension.

Am J Physiol Lung Cell Mol Physiol. 2019-8-28

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索