Suppr超能文献

端粒与端粒酶生物学

Telomere and telomerase biology.

作者信息

Giardini Miriam Aparecida, Segatto Marcela, da Silva Marcelo Santos, Nunes Vinícius Santana, Cano Maria Isabel Nogueira

机构信息

Depto. de Genética, Instituto de Biociências, Univ. Estadual Paulista Júlio de Mesquita Filho UNESP-Botucatu, São Paulo, Brazil.

出版信息

Prog Mol Biol Transl Sci. 2014;125:1-40. doi: 10.1016/B978-0-12-397898-1.00001-3.

Abstract

Telomeres are the physical ends of eukaryotic linear chromosomes. Telomeres form special structures that cap chromosome ends to prevent degradation by nucleolytic attack and to distinguish chromosome termini from DNA double-strand breaks. With few exceptions, telomeres are composed primarily of repetitive DNA associated with proteins that interact specifically with double- or single-stranded telomeric DNA or with each other, forming highly ordered and dynamic complexes involved in telomere maintenance and length regulation. In proliferative cells and unicellular organisms, telomeric DNA is replicated by the actions of telomerase, a specialized reverse transcriptase. In the absence of telomerase, some cells employ a recombination-based DNA replication pathway known as alternative lengthening of telomeres. However, mammalian somatic cells that naturally lack telomerase activity show telomere shortening with increasing age leading to cell cycle arrest and senescence. In another way, mutations or deletions of telomerase components can lead to inherited genetic disorders, and the depletion of telomeric proteins can elicit the action of distinct kinases-dependent DNA damage response, culminating in chromosomal abnormalities that are incompatible with life. In addition to the intricate network formed by the interrelationships among telomeric proteins, long noncoding RNAs that arise from subtelomeric regions, named telomeric repeat-containing RNA, are also implicated in telomerase regulation and telomere maintenance. The goal for the next years is to increase our knowledge about the mechanisms that regulate telomere homeostasis and the means by which their absence or defect can elicit telomere dysfunction, which generally results in gross genomic instability and genetic diseases.

摘要

端粒是真核生物线性染色体的物理末端。端粒形成特殊结构,覆盖染色体末端以防止核酸酶攻击导致的降解,并将染色体末端与DNA双链断裂区分开来。除少数例外情况,端粒主要由与蛋白质相关的重复DNA组成,这些蛋白质与双链或单链端粒DNA或彼此特异性相互作用,形成参与端粒维持和长度调节的高度有序且动态的复合物。在增殖细胞和单细胞生物中,端粒DNA通过端粒酶(一种特殊的逆转录酶)的作用进行复制。在没有端粒酶的情况下,一些细胞采用一种基于重组的DNA复制途径,称为端粒的替代延长。然而,天然缺乏端粒酶活性的哺乳动物体细胞随着年龄增长会出现端粒缩短,导致细胞周期停滞和衰老。另一方面,端粒酶成分的突变或缺失可导致遗传性疾病,端粒蛋白的消耗可引发不同激酶依赖性DNA损伤反应,最终导致与生命不相容的染色体异常。除了由端粒蛋白之间的相互关系形成的复杂网络外,来自亚端粒区域的长链非编码RNA,即含端粒重复序列的RNA,也参与端粒酶调节和端粒维持。未来几年的目标是增加我们对调节端粒稳态机制的了解,以及缺乏或缺陷这些机制引发端粒功能障碍的方式,端粒功能障碍通常会导致严重的基因组不稳定和遗传疾病。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验