Suppr超能文献

自旋起源的多铁性材料。

Multiferroics of spin origin.

机构信息

RIKEN Center for Emergent Matter Science (CEMS), Wako 351-0198, Japan. Department of Applied Physics, University of Tokyo, Tokyo 113-8656, Japan.

出版信息

Rep Prog Phys. 2014 Jul;77(7):076501. doi: 10.1088/0034-4885/77/7/076501. Epub 2014 Jul 4.

Abstract

Multiferroics, compounds with both magnetic and ferroelectric orders, are believed to be a key material system to achieve cross-control between magnetism and electricity in a solid with minute energy dissipation. Such a colossal magnetoelectric (ME) effect has been an issue of keen interest for a long time in condensed matter physics as well as a most desired function in the emerging spin-related electronics. Here we begin with the basic mechanisms to realize multiferroicity or spin-driven ferroelectricity in magnetic materials, which have recently been clarified and proved both theoretically and experimentally. According to the proposed mechanisms, many families of multiferroics have been explored, found (re-discovered), and newly developed, realizing a variety of colossal ME controls. We overview versatile multiferroics from the viewpoints of their multiferroicity mechanisms and their fundamental ME characteristics on the basis of the recent advances in exploratory materials. One of the new directions in multiferroic science is the dynamical ME effect, namely the dynamical and/or fast cross-control between electric and magnetic dipoles in a solid. We argue here that the dynamics of multiferroic domain walls significantly contributes to the amplification of ME response, which has been revealed through the dielectric spectroscopy. Another related issue is the electric-dipole-active magnetic resonance, called electromagnons. The electromagnons can provide a new stage of ME optics via resonant coupling with the external electromagnetic wave (light). Finally, we give concluding remarks on multiferroics physics in the light of a broader perspective from the emergent electromagnetism in a solid as well as from the possible application toward future dissipationless electronics.

摘要

多铁性材料同时具有磁性和铁电性,被认为是一种关键的材料体系,可以在固体中实现微小能量耗散下的磁电交叉控制。这种巨大的磁电(ME)效应长期以来一直是凝聚态物理中的一个热点问题,也是新兴自旋电子学中最理想的功能之一。在这里,我们首先介绍了在磁性材料中实现多铁性或自旋驱动铁电性的基本机制,这些机制最近已经在理论和实验上得到了阐明和证明。根据所提出的机制,已经探索、发现(重新发现)并新开发了许多多铁性家族,实现了各种巨大的 ME 控制。我们根据探索性材料的最新进展,从多铁性机制和基本 ME 特性的角度综述了多功能多铁性材料。多铁性科学的一个新方向是动态 ME 效应,即在固体中电偶极子和磁偶极子之间的动态和/或快速交叉控制。我们在这里认为,多铁性畴壁的动力学对 ME 响应的放大有显著贡献,这已经通过介电谱得到了揭示。另一个相关的问题是电偶极子活性的磁共振,称为电磁子。电磁子可以通过与外部电磁波(光)的共振耦合提供 ME 光学的新平台。最后,我们根据从固体中新兴的电磁学以及可能在未来无耗散电子学中的应用的更广泛视角,对多铁性物理学给出了结论性的评论。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验