Zhou P X, Dong S, Liu H M, Ma C Y, Yan Z B, Zhong C G, Liu J-M
1] Laboratory of Solid State Microstructures and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China [2] School of Science, Nantong University, Nantong 226007, China.
Department of Physics, Southeast University, Nanjing 211189, China.
Sci Rep. 2015 Aug 13;5:13052. doi: 10.1038/srep13052.
Charge dipole moment and spin moment rarely coexist in single-phase bulk materials except in some multiferroics. Despite the progress in the past decade, for most multiferroics their magnetoelectric performance remains poor due to the intrinsic exclusion between charge dipole and spin moment. As an alternative approach, the oxide heterostructures may evade the intrinsic limits in bulk materials and provide more attractive potential to realize the magnetoelectric functions. Here we perform a first-principles study on LaAlO3/PbTiO3 superlattices. Although neither of the components is magnetic, magnetic moments emerge at the ferroelectric domain walls of PbTiO3 in these superlattices. Such a twist between ferroelectric domain and local magnetic moment, not only manifests an interesting type of multiferroicity, but also is possible useful to pursuit the electrical-control of magnetism in nanoscale heterostructures.
除了一些多铁性材料外,电荷偶极矩和自旋矩很少共存于单相块体材料中。尽管在过去十年中取得了进展,但对于大多数多铁性材料而言,由于电荷偶极和自旋矩之间的内在排斥,它们的磁电性能仍然很差。作为一种替代方法,氧化物异质结构可以规避块体材料中的内在限制,并为实现磁电功能提供更具吸引力的潜力。在此,我们对LaAlO3/PbTiO3超晶格进行了第一性原理研究。尽管这两种组分都不是磁性的,但在这些超晶格中,PbTiO3的铁电畴壁处出现了磁矩。铁电畴和局部磁矩之间的这种扭曲,不仅表现出一种有趣的多铁性类型,而且对于在纳米尺度异质结构中实现磁的电控制也可能是有用的。