Gashti Mazeyar Parvinzadeh, Burgener Matthias, Stir Manuela, Hulliger Jürg
Department of Chemistry & Biochemistry, University of Berne, Freiestrasse 3, CH-3012 Berne, Switzerland; Department of Textile, College of Engineering, Yadegar-e-Imam Khomeini (RAH) Branch, Islamic Azad University, Tehran, Iran.
Department of Chemistry & Biochemistry, University of Berne, Freiestrasse 3, CH-3012 Berne, Switzerland.
J Colloid Interface Sci. 2014 Oct 1;431:149-56. doi: 10.1016/j.jcis.2014.06.010. Epub 2014 Jun 17.
Recently, attention has been spent on crystal growth of phosphate compounds in gels for studying the mechanism of in vitro crystallization processes. Here, we present a gel-based approach for the synthesis of barium hydrogen phosphate (BHP) crystals using single and double diffusion techniques in gelatin. The composite crystals were compared with analytical grade BHP powder, single and polycrystalline BHP materials using Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), scanning pyroelectric microscopy (SPEM), optical microscopy (OM), thermal gravimetric analysis (TGA) and X-ray diffraction (XRD). FTIR spectra showed surface adsorption of gelatin molecules by using BHP stacked sheets due to CH2 stretching, CH2 bending and amide I vibrations are found in a gelatin content of about 2% determined by dissolution. SEM shows various crystal morphologies of the BHP/gelatin composites forming bundled micro-flakes to irregular bundled needles and spheres different from gel-free crystals. The variety in morphology depends on the ion concentration, pH of gel as well as the method of crystal growth. SPEM investigation of BHP/gelatin aggregates revealed polar domains showing alteration of the polarization. Moreover, BHP/gelatin composite crystals showed a higher thermal stability in comparison with analytical grade BHP or/and BHP single crystals due to strong interactions between gelatin and BHP. The XRD diffraction analysis demonstrated that the single and double diffusion techniques in gelatin led to the formation of orthorhombic BHP. This study demonstrates that gelatin is a useful high molecular weight biomacromolecule for controlling the crystallization of a composite material by producing a variety of morphological forms.
最近,人们将注意力集中在凝胶中磷酸盐化合物的晶体生长上,以研究体外结晶过程的机制。在此,我们提出一种基于凝胶的方法,利用明胶中的单扩散和双扩散技术合成磷酸氢钡(BHP)晶体。使用傅里叶变换红外光谱(FTIR)、扫描电子显微镜(SEM)、扫描热释电显微镜(SPEM)、光学显微镜(OM)、热重分析(TGA)和X射线衍射(XRD),将复合晶体与分析纯BHP粉末、单晶和多晶BHP材料进行了比较。FTIR光谱显示,由于CH2伸缩振动、CH2弯曲振动和酰胺I振动,明胶分子通过BHP堆叠薄片发生表面吸附,通过溶解测定,在约2%的明胶含量中发现了这些振动。SEM显示,BHP/明胶复合材料的各种晶体形态形成了束状微薄片、不规则束状针和球体,这与无凝胶晶体不同。形态的多样性取决于离子浓度、凝胶的pH值以及晶体生长方法。对BHP/明胶聚集体的SPEM研究揭示了显示极化变化的极性域。此外,由于明胶和BHP之间的强相互作用,BHP/明胶复合晶体与分析纯BHP或/和BHP单晶相比显示出更高的热稳定性。XRD衍射分析表明,明胶中的单扩散和双扩散技术导致了正交晶系BHP的形成。这项研究表明,明胶是一种有用的高分子量生物大分子,可通过产生多种形态来控制复合材料的结晶。