Suppr超能文献

可高效模拟的高纠缠多体态类别。

Class of highly entangled many-body states that can be efficiently simulated.

机构信息

Institute for Quantum Information and Matter, California Institute of Technology, MC 305-16, Pasadena, California 91125, USA.

Perimeter Institute for Theoretical Physics, Waterloo, Ontario N2L 2Y5, Canada.

出版信息

Phys Rev Lett. 2014 Jun 20;112(24):240502. doi: 10.1103/PhysRevLett.112.240502. Epub 2014 Jun 18.

Abstract

We describe a quantum circuit that produces a highly entangled state of N qubits from which one can efficiently compute expectation values of local observables. This construction yields a variational ansatz for quantum many-body states that can be regarded as a generalization of the multiscale entanglement renormalization ansatz (MERA), which we refer to as the branching MERA. In a lattice system in D dimensions, the scaling of entanglement of a region of size L(D) in the branching MERA is not subject to restrictions such as a boundary law L(D-1), but can be proportional to the size of the region, as we demonstrate numerically.

摘要

我们描述了一个量子电路,它可以从 N 个量子位中产生高度纠缠的状态,从中可以有效地计算局部可观测量的期望值。这种构造为量子多体状态产生了一种变分假设,可以看作是多尺度纠缠重整化假设(MERA)的推广,我们称之为分支 MERA。在 D 维格系统中,分支 MERA 中大小为 L(D)的区域的纠缠的标度不受边界定律 L(D-1)等限制,而是可以与区域的大小成正比,我们通过数值验证了这一点。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验