Department of Physics and Astronomy, University of California, Irvine, California 92697-4575, USA.
Perimeter Institute for Theoretical Physics, Waterloo, Ontario N2L 2Y5, Canada.
Phys Rev Lett. 2015 Nov 13;115(20):200401. doi: 10.1103/PhysRevLett.115.200401. Epub 2015 Nov 10.
We show how to build a multiscale entanglement renormalization ansatz (MERA) representation of the ground state of a many-body Hamiltonian H by applying the recently proposed tensor network renormalization [G. Evenbly and G. Vidal, Phys. Rev. Lett. 115, 180405 (2015)] to the Euclidean time evolution operator e(-βH) for infinite β. This approach bypasses the costly energy minimization of previous MERA algorithms and, when applied to finite inverse temperature β, produces a MERA representation of a thermal Gibbs state. Our construction endows tensor network renormalization with a renormalization group flow in the space of wave functions and Hamiltonians (and not merely in the more abstract space of tensors) and extends the MERA formalism to classical statistical systems.
我们展示了如何通过将最近提出的张量网络重整化[G. Evenbly 和 G. Vidal,Phys. Rev. Lett. 115, 180405 (2015)]应用于无限β的欧几里得时间演化算子 e(-βH),来构建多尺度纠缠重整化态(MERA)对许多体哈密顿量 H 的基态表示。这种方法绕过了以前 MERA 算法中代价高昂的能量最小化,并且当应用于有限的逆温度β时,会产生热吉布斯态的 MERA 表示。我们的构造赋予张量网络重整化在波函数和哈密顿量(而不仅仅是在更抽象的张量)空间中的重整化群流,并将 MERA 形式主义扩展到经典统计系统。