Chu Su-Kuan, Zhu Guanyu, Garrison James R, Eldredge Zachary, Curiel Ana Valdés, Bienias Przemyslaw, Spielman I B, Gorshkov Alexey V
Joint Quantum Institute, NIST/University of Maryland, College Park, Maryland 20742, USA.
Joint Center for Quantum Information and Computer Science, NIST/University of Maryland, College Park, Maryland 20742, USA.
Phys Rev Lett. 2019 Mar 29;122(12):120502. doi: 10.1103/PhysRevLett.122.120502.
The multiscale entanglement renormalization ansatz (MERA) postulates the existence of quantum circuits that renormalize entanglement in real space at different length scales. Chern insulators, however, cannot have scale-invariant discrete MERA circuits with a finite bond dimension. In this Letter, we show that the continuous MERA (cMERA), a modified version of MERA adapted for field theories, possesses a fixed point wave function with a nonzero Chern number. Additionally, it is well known that reversed MERA circuits can be used to prepare quantum states efficiently in time that scales logarithmically with the size of the system. However, state preparation via MERA typically requires the advent of a full-fledged universal quantum computer. In this Letter, we demonstrate that our cMERA circuit can potentially be realized in existing analog quantum computers, i.e., an ultracold atomic Fermi gas in an optical lattice with light-induced spin-orbit coupling.
多尺度纠缠重整化假设(MERA)假定存在这样的量子电路,其能在不同长度尺度上对实空间中的纠缠进行重整化。然而,陈绝缘体不能拥有具有有限键维度的尺度不变离散MERA电路。在本信函中,我们表明连续MERA(cMERA),即一种适用于场论的MERA修改版本,拥有一个具有非零陈数的不动点波函数。此外,众所周知,反向MERA电路可用于在与系统大小成对数比例的时间内有效地制备量子态。然而,通过MERA进行态制备通常需要一台成熟的通用量子计算机。在本信函中,我们证明我们的cMERA电路有可能在现有的模拟量子计算机中实现,即具有光诱导自旋轨道耦合的光学晶格中的超冷原子费米气体。