Suppr超能文献

陈绝缘体的尺度不变连续纠缠重整化

Scale-Invariant Continuous Entanglement Renormalization of a Chern Insulator.

作者信息

Chu Su-Kuan, Zhu Guanyu, Garrison James R, Eldredge Zachary, Curiel Ana Valdés, Bienias Przemyslaw, Spielman I B, Gorshkov Alexey V

机构信息

Joint Quantum Institute, NIST/University of Maryland, College Park, Maryland 20742, USA.

Joint Center for Quantum Information and Computer Science, NIST/University of Maryland, College Park, Maryland 20742, USA.

出版信息

Phys Rev Lett. 2019 Mar 29;122(12):120502. doi: 10.1103/PhysRevLett.122.120502.

Abstract

The multiscale entanglement renormalization ansatz (MERA) postulates the existence of quantum circuits that renormalize entanglement in real space at different length scales. Chern insulators, however, cannot have scale-invariant discrete MERA circuits with a finite bond dimension. In this Letter, we show that the continuous MERA (cMERA), a modified version of MERA adapted for field theories, possesses a fixed point wave function with a nonzero Chern number. Additionally, it is well known that reversed MERA circuits can be used to prepare quantum states efficiently in time that scales logarithmically with the size of the system. However, state preparation via MERA typically requires the advent of a full-fledged universal quantum computer. In this Letter, we demonstrate that our cMERA circuit can potentially be realized in existing analog quantum computers, i.e., an ultracold atomic Fermi gas in an optical lattice with light-induced spin-orbit coupling.

摘要

多尺度纠缠重整化假设(MERA)假定存在这样的量子电路,其能在不同长度尺度上对实空间中的纠缠进行重整化。然而,陈绝缘体不能拥有具有有限键维度的尺度不变离散MERA电路。在本信函中,我们表明连续MERA(cMERA),即一种适用于场论的MERA修改版本,拥有一个具有非零陈数的不动点波函数。此外,众所周知,反向MERA电路可用于在与系统大小成对数比例的时间内有效地制备量子态。然而,通过MERA进行态制备通常需要一台成熟的通用量子计算机。在本信函中,我们证明我们的cMERA电路有可能在现有的模拟量子计算机中实现,即具有光诱导自旋轨道耦合的光学晶格中的超冷原子费米气体。

相似文献

2
Real-space renormalization yields finite correlations.实空间重整化导致有限相关性。
Phys Rev Lett. 2010 Jul 2;105(1):010502. doi: 10.1103/PhysRevLett.105.010502.
4
Entanglement Renormalization and Wavelets.纠缠重整化与小波
Phys Rev Lett. 2016 Apr 8;116(14):140403. doi: 10.1103/PhysRevLett.116.140403. Epub 2016 Apr 6.
6
Class of highly entangled many-body states that can be efficiently simulated.可高效模拟的高纠缠多体态类别。
Phys Rev Lett. 2014 Jun 20;112(24):240502. doi: 10.1103/PhysRevLett.112.240502. Epub 2014 Jun 18.
7
Entanglement renormalization and topological order.纠缠重整化与拓扑序。
Phys Rev Lett. 2008 Feb 22;100(7):070404. doi: 10.1103/PhysRevLett.100.070404. Epub 2008 Feb 21.
9
Entanglement Renormalization of Thermofield Double States.热场双重态的纠缠重整化
Phys Rev Lett. 2021 Aug 20;127(8):080602. doi: 10.1103/PhysRevLett.127.080602.
10
Entanglement renormalization for quantum fields in real space.实空间中量子场的纠缠重整化。
Phys Rev Lett. 2013 Mar 8;110(10):100402. doi: 10.1103/PhysRevLett.110.100402. Epub 2013 Mar 5.

本文引用的文献

1
Neural Network Representation of Tensor Network and Chiral States.张量网络和手征态的神经网络表示。
Phys Rev Lett. 2021 Oct 22;127(17):170601. doi: 10.1103/PhysRevLett.127.170601.
5
Rashba realization: Raman with RF.Rashba效应的实现:拉曼散射与射频结合。
New J Phys. 2016 Mar;18. doi: 10.1088/1367-2630/18/3/033035. Epub 2016 Apr 1.
7
Entanglement Renormalization and Wavelets.纠缠重整化与小波
Phys Rev Lett. 2016 Apr 8;116(14):140403. doi: 10.1103/PhysRevLett.116.140403. Epub 2016 Apr 6.
8
Quantum Quenches in Chern Insulators.陈绝缘体中的量子猝灭
Phys Rev Lett. 2015 Dec 4;115(23):236403. doi: 10.1103/PhysRevLett.115.236403. Epub 2015 Dec 2.
10
Tomography of band insulators from quench dynamics.基于猝灭动力学的带隙绝缘体断层扫描
Phys Rev Lett. 2014 Jul 25;113(4):045303. doi: 10.1103/PhysRevLett.113.045303. Epub 2014 Jul 23.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验