Sridharan Upasana, Ebihara Akio, Kuramitsu Seiki, Yokoyama Shigeyuki, Kumarevel Thirumananseri, Ponnuraj Karthe
Centre of Advanced Study in Crystallography and Biophysics, University of Madras, Guindy Campus, Chennai, 600 025, India.
Extremophiles. 2014 Nov;18(6):973-85. doi: 10.1007/s00792-014-0667-4. Epub 2014 Jul 5.
Dihydrodipicolinate synthase (DHDPS, E.C.4.2.1.52) catalyzes the first committed step in the lysine biosynthetic pathway: the condensation of (S)-aspartate semialdehyde and pyruvate to form (4S)-4-hydroxy-2,3,4,5-tetrahydro-(2S)-dipicolinic acid. Since (S)-lysine biosynthesis does not occur in animals, DHDPS is an attractive target for rational antibiotic and herbicide design. Here, we report the crystal structure of DHDPS from a hyperthermophilic bacterium Aquifex aeolicus (AqDHDPS). L-Lysine is used as an important animal feed additive where the production is at the level of 1.5 million tons per year. The biotechnological manufacture of lysine has been going for more than 50 years which includes over synthesis and reverse engineering of DHDPS. AqDHDPS revealed a unique disulfide linkage which is not conserved in the homologues of AqDHDPS. In silico mutation of C139A and intermolecular ion-pair residues and the subsequent molecular dynamics simulation of the mutants showed that these residues are critical for the stability of AqDHDPS tetramer. MD simulations of AqDHDPS at three different temperatures (303, 363 and 393 K) revealed that the molecule is stable at 363 K. Thus, this structural and in silico study of AqDHDPS likely provides additional details towards the rational and structure-based design of hyper-L-lysine producing bacterial strains.
二氢吡啶二羧酸合酶(DHDPS,E.C.4.2.1.52)催化赖氨酸生物合成途径中的首个关键步骤:(S)-天冬氨酸半醛与丙酮酸缩合形成(4S)-4-羟基-2,3,4,5-四氢-(2S)-二吡啶羧酸。由于动物体内不发生(S)-赖氨酸的生物合成,DHDPS是合理设计抗生素和除草剂的一个有吸引力的靶点。在此,我们报道了嗜热栖热菌(Aquifex aeolicus)的DHDPS(AqDHDPS)的晶体结构。L-赖氨酸用作重要的动物饲料添加剂,其年产量达150万吨。赖氨酸的生物技术制造已经进行了50多年,其中包括对DHDPS的过量合成和逆向工程。AqDHDPS显示出一种独特的二硫键连接,这在AqDHDPS的同源物中并不保守。对C139A和分子间离子对残基进行计算机模拟突变,并对突变体进行后续分子动力学模拟,结果表明这些残基对AqDHDPS四聚体的稳定性至关重要。在三个不同温度(303、363和393 K)下对AqDHDPS进行的分子动力学模拟表明,该分子在363 K时是稳定的。因此,对AqDHDPS的这一结构和计算机模拟研究可能为高产L-赖氨酸细菌菌株的合理设计和基于结构的设计提供更多细节。