Gonzalez de Vega Claudia, Alberts Deborah, Chawla Vipin, Mohanty Gaurav, Utke Ivo, Michler Johann, Pereiro Rosario, Bordel Nerea, Gamez Gerardo
Department of Physical and Analytical Chemistry, University of Oviedo, Julián Claveria 8, 33008, Oviedo, Spain.
Anal Bioanal Chem. 2014 Nov;406(29):7533-8. doi: 10.1007/s00216-014-7941-2. Epub 2014 Jul 6.
Combinatorial chemistry and high-throughput techniques are an efficient way of exploring optimal values of elemental composition. Optimal composition can result in high performance in a sequence of material synthesis and characterization. Materials combinatorial libraries are typically encountered in the form of a thin film composition gradient which is produced by simultaneous material deposition on a substrate from two or more sources that are spatially separated and chemically different. Fast spatially resolved techniques are needed to characterize structure, composition, and relevant properties of these combinatorial screening samples. In this work, the capability of a glow discharge optical emission spectroscopy (GD-OES) elemental mapping system is extended to nitrogen-based combinatorial libraries with nonconductive components through the use of pulsed radiofrequency power. The effects of operating parameters of the glow discharge and detection system on the achievable spatial resolution were investigated as it is the first time that an rf source is coupled to a setup featuring a push-broom hyperspectral imaging system and a restrictive anode tube GD source. Spatial-resolution optimized conditions were then used to characterize an aluminum nitride/chromium nitride thin-film composition spread. Qualitative elemental maps could be obtained within 16.8 s, orders of magnitude faster than typical techniques. The use of certified reference materials allowed quantitative elemental analysis maps to be extracted from the emission intensity images. Moreover, the quantitative procedure allowed correcting for the inherent emission intensity inhomogeneity in GD-OES. The results are compared to quantitative depth profiles obtained with a commercial GD-OES instrument.
组合化学和高通量技术是探索元素组成最佳值的有效方法。最佳组成可在一系列材料合成和表征中带来高性能。材料组合库通常以薄膜成分梯度的形式出现,它是通过同时从两个或更多空间分离且化学性质不同的源在基板上沉积材料而产生的。需要快速的空间分辨技术来表征这些组合筛选样品的结构、组成和相关性质。在这项工作中,通过使用脉冲射频功率,辉光放电光发射光谱(GD - OES)元素映射系统的能力扩展到了具有非导电成分的氮基组合库。研究了辉光放电和检测系统的操作参数对可实现的空间分辨率的影响,因为这是首次将射频源与配备推扫式高光谱成像系统和限流阳极管GD源的装置耦合。然后使用空间分辨率优化条件来表征氮化铝/氮化铬薄膜成分分布。定性元素图可在16.8秒内获得, 比典型技术快几个数量级。使用经认证的参考材料可从发射强度图像中提取定量元素分析图。此外,定量程序可校正GD - OES中固有的发射强度不均匀性。将结果与使用商用GD - OES仪器获得的定量深度剖面进行比较。