Suppr超能文献

肺炎链球菌表达的肺炎溶血素可保护定殖小鼠免受流感病毒诱导的疾病侵害。

Pneumolysin expression by streptococcus pneumoniae protects colonized mice from influenza virus-induced disease.

作者信息

Wolf Amaya I, Strauman Maura C, Mozdzanowska Krystyna, Williams Katie L, Osborne Lisa C, Shen Hao, Liu Qin, Garlick David, Artis David, Hensley Scott E, Caton Andrew J, Weiser Jeffrey N, Erikson Jan

机构信息

The Wistar Institute, 3601 Spruce Street, Philadelphia, PA 19104, United States of America.

University of Pennsylvania, Philadelphia, PA 19104, United States of America.

出版信息

Virology. 2014 Aug;462-463:254-65. doi: 10.1016/j.virol.2014.06.019. Epub 2014 Jul 5.

Abstract

The response to influenza virus (IAV) infection and severity of disease is highly variable in humans. We hypothesized that one factor contributing to this variability is the presence of specific respiratory tract (RT) microbes. One such microbe is Streptococcus pneumoniae (Sp) that is carried asymptomatically in the RT of many humans. In a mouse co-infection model we found that in contrast to secondary bacterial infection that exacerbates disease, Sp colonization 10 days prior to IAV protects from virus-induced morbidity and lung pathology. Using mutant Sp strains, we identified a critical role for the bacterial virulence factor pneumolysin (PLY) in mediating this protection. Colonization with the PLY-sufficient Sp strain induces expression of the immune-suppressive enzyme arginase 1 in alveolar macrophages (aMø) and correlates with attenuated recruitment and function of pulmonary inflammatory cells. Our study demonstrates a novel role for PLY in Sp-mediated protection by maintaining aMø as "gatekeepers" against virus-induced immunopathology.

摘要

人类对流感病毒(IAV)感染的反应和疾病严重程度差异很大。我们推测造成这种差异的一个因素是特定呼吸道(RT)微生物的存在。其中一种微生物是肺炎链球菌(Sp),许多人在呼吸道中无症状携带。在小鼠共感染模型中,我们发现与加重疾病的继发性细菌感染不同,IAV感染前10天的Sp定植可预防病毒诱导的发病和肺部病理变化。使用突变的Sp菌株,我们确定了细菌毒力因子肺炎溶血素(PLY)在介导这种保护作用中的关键作用。用PLY充足的Sp菌株定植可诱导肺泡巨噬细胞(aMø)中免疫抑制酶精氨酸酶1的表达,并与肺部炎症细胞的募集减少和功能减弱相关。我们的研究证明了PLY在Sp介导的保护中的新作用,即通过维持aMø作为抵御病毒诱导的免疫病理的“守门人”。

相似文献

1
Pneumolysin expression by streptococcus pneumoniae protects colonized mice from influenza virus-induced disease.
Virology. 2014 Aug;462-463:254-65. doi: 10.1016/j.virol.2014.06.019. Epub 2014 Jul 5.
3
Novel role for the Streptococcus pneumoniae toxin pneumolysin in the assembly of biofilms.
mBio. 2013 Sep 10;4(5):e00655-13. doi: 10.1128/mBio.00655-13.
4
The TCM prescription Ma-xing-shi-gan-tang inhibits Streptococcus pneumoniae pathogenesis by targeting pneumolysin.
J Ethnopharmacol. 2021 Jul 15;275:114133. doi: 10.1016/j.jep.2021.114133. Epub 2021 Apr 20.
5
Acacetin inhibits Streptococcus pneumoniae virulence by targeting pneumolysin.
J Pharm Pharmacol. 2020 Aug;72(8):1092-1100. doi: 10.1111/jphp.13279. Epub 2020 May 10.
7
Dual function of pneumolysin in the early pathogenesis of murine pneumococcal pneumonia.
J Clin Invest. 1995 Jan;95(1):142-50. doi: 10.1172/JCI117631.
8
Detoxified pneumolysin derivative Plym2 directly protects against pneumococcal infection via induction of inflammatory cytokines.
Immunol Invest. 2014;43(7):717-26. doi: 10.3109/08820139.2014.930478. Epub 2014 Jul 14.
10
Pneumolysin suppresses the initial macrophage pro-inflammatory response to Streptococcus pneumoniae.
Immunology. 2022 Nov;167(3):413-427. doi: 10.1111/imm.13546. Epub 2022 Jul 28.

引用本文的文献

2
The interactions of SARS-CoV-2 with cocirculating pathogens: Epidemiological implications and current knowledge gaps.
PLoS Pathog. 2023 Mar 8;19(3):e1011167. doi: 10.1371/journal.ppat.1011167. eCollection 2023 Mar.
4
Targeted control of pneumolysin production by a mobile genetic element in .
Microb Genom. 2022 Apr;8(4). doi: 10.1099/mgen.0.000784.
5
Affects Airway Epithelial Response and Barrier Function During Rhinovirus Infection.
Front Cell Infect Microbiol. 2022 Feb 21;12:846828. doi: 10.3389/fcimb.2022.846828. eCollection 2022.
6
Bacterial Toxins Are a Never-Ending Source of Surprises: From Natural Born Killers to Negotiators.
Toxins (Basel). 2021 Jun 17;13(6):426. doi: 10.3390/toxins13060426.
8
Influenza-Induced Oxidative Stress Sensitizes Lung Cells to Bacterial-Toxin-Mediated Necroptosis.
Cell Rep. 2020 Aug 25;32(8):108062. doi: 10.1016/j.celrep.2020.108062.
10
Close Encounters of the Viral Kind: Cross-Kingdom Synergies at the Host-Pathogen Interface.
Bioessays. 2019 Dec;41(12):e1900128. doi: 10.1002/bies.201900128. Epub 2019 Nov 6.

本文引用的文献

1
Alveolar macrophages are essential for protection from respiratory failure and associated morbidity following influenza virus infection.
PLoS Pathog. 2014 Apr 3;10(4):e1004053. doi: 10.1371/journal.ppat.1004053. eCollection 2014 Apr.
2
Alveolar macrophages: plasticity in a tissue-specific context.
Nat Rev Immunol. 2014 Feb;14(2):81-93. doi: 10.1038/nri3600. Epub 2014 Jan 21.
4
Depletion of alveolar macrophages during influenza infection facilitates bacterial superinfections.
J Immunol. 2013 Aug 1;191(3):1250-9. doi: 10.4049/jimmunol.1300014. Epub 2013 Jun 26.
5
The TLR4 antagonist Eritoran protects mice from lethal influenza infection.
Nature. 2013 May 23;497(7450):498-502. doi: 10.1038/nature12118. Epub 2013 May 1.
7
Commensal bacteria calibrate the activation threshold of innate antiviral immunity.
Immunity. 2012 Jul 27;37(1):158-70. doi: 10.1016/j.immuni.2012.04.011. Epub 2012 Jun 14.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验