Suppr超能文献

树突和轴突差异生长的潜在调节机制。

Regulatory mechanisms underlying the differential growth of dendrites and axons.

作者信息

Wang Xin, Sterne Gabriella R, Ye Bing

机构信息

Life Sciences Institute and Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI, 48109, USA.

出版信息

Neurosci Bull. 2014 Aug;30(4):557-68. doi: 10.1007/s12264-014-1447-3. Epub 2014 Jul 8.

Abstract

A typical neuron is comprised of an information input compartment, or the dendrites, and an output compartment, known as the axon. These two compartments are the structural basis for functional neural circuits. However, little is known about how dendritic and axonal growth are differentially regulated. Recent studies have uncovered two distinct types of regulatory mechanisms that differentiate dendritic and axonal growth: dedicated mechanisms and bimodal mechanisms. Dedicated mechanisms regulate either dendritespecific or axon-specific growth; in contrast, bimodal mechanisms direct dendritic and axonal development in opposite manners. Here, we review the dedicated and bimodal regulators identified by recent Drosophila and mammalian studies. The knowledge of these underlying molecular mechanisms not only expands our understanding about how neural circuits are wired, but also provides insights that will aid in the rational design of therapies for neurological diseases.

摘要

一个典型的神经元由一个信息输入部分即树突,以及一个输出部分即轴突组成。这两个部分是功能性神经回路的结构基础。然而,关于树突和轴突的生长是如何受到不同调节的,我们却知之甚少。最近的研究发现了两种不同类型的调节机制,它们区分了树突和轴突的生长:专一性机制和双峰机制。专一性机制调节树突特异性或轴突特异性生长;相比之下,双峰机制以相反的方式指导树突和轴突的发育。在这里,我们回顾了最近果蝇和哺乳动物研究中确定的专一性和双峰调节因子。对这些潜在分子机制的了解不仅扩展了我们对神经回路如何形成的理解,还提供了有助于合理设计神经疾病治疗方法的见解。

相似文献

1
Regulatory mechanisms underlying the differential growth of dendrites and axons.
Neurosci Bull. 2014 Aug;30(4):557-68. doi: 10.1007/s12264-014-1447-3. Epub 2014 Jul 8.
2
Bimodal control of dendritic and axonal growth by the dual leucine zipper kinase pathway.
PLoS Biol. 2013;11(6):e1001572. doi: 10.1371/journal.pbio.1001572. Epub 2013 Jun 4.
4
Differentiated neurons retain the capacity to generate axons from dendrites.
Curr Biol. 2000 Nov 16;10(22):1467-70. doi: 10.1016/s0960-9822(00)00807-1.
5
Degeneration of Injured Axons and Dendrites Requires Restraint of a Protective JNK Signaling Pathway by the Transmembrane Protein Raw.
J Neurosci. 2019 Oct 23;39(43):8457-8470. doi: 10.1523/JNEUROSCI.0016-19.2019. Epub 2019 Sep 6.
6
Asymmetric microtubule nucleation from Golgi stacks promotes opposite microtubule polarity in axons and dendrites.
Curr Biol. 2025 Mar 24;35(6):1311-1325.e4. doi: 10.1016/j.cub.2025.02.013. Epub 2025 Mar 3.
7
Control of axonal sprouting and dendrite branching by the Nrg-Ank complex at the neuron-glia interface.
Curr Biol. 2006 Aug 22;16(16):1678-83. doi: 10.1016/j.cub.2006.06.061.
8
10
AMIGO1 Promotes Axon Growth and Territory Matching in the Retina.
J Neurosci. 2022 Mar 30;42(13):2678-2689. doi: 10.1523/JNEUROSCI.1164-21.2022. Epub 2022 Feb 15.

引用本文的文献

3
DIP2B Interacts With α-Tubulin to Regulate Axon Outgrowth.
Front Cell Neurosci. 2020 Feb 19;14:29. doi: 10.3389/fncel.2020.00029. eCollection 2020.
4
VEGF/VEGFR2 signaling regulates hippocampal axon branching during development.
Elife. 2019 Dec 23;8:e49818. doi: 10.7554/eLife.49818.
5
Haploinsufficiency Impairs Dendritic Arborization and Spine Formation, Leading to Cognitive Deficits.
Front Cell Neurosci. 2019 Jun 4;13:249. doi: 10.3389/fncel.2019.00249. eCollection 2019.
6
Nestin in immature embryonic neurons affects axon growth cone morphology and Semaphorin3a sensitivity.
Mol Biol Cell. 2019 May 1;30(10):1214-1229. doi: 10.1091/mbc.E18-06-0361. Epub 2019 Mar 6.
9
Intrinsic mechanisms for axon regeneration: insights from injured axons in Drosophila.
Curr Opin Genet Dev. 2017 Jun;44:84-91. doi: 10.1016/j.gde.2017.01.009. Epub 2017 Feb 21.
10
Neurodevelopment and degeneration.
Neurosci Bull. 2014 Aug;30(4):539-41. doi: 10.1007/s12264-014-1455-3.

本文引用的文献

1
Transcriptional regulators that differentially control dendrite and axon development.
Front Biol (Beijing). 2012 Aug;7(4):292-296. doi: 10.1007/s11515-012-1234-y. Epub 2012 Jun 12.
2
Cell-intrinsic drivers of dendrite morphogenesis.
Development. 2013 Dec;140(23):4657-71. doi: 10.1242/dev.087676.
4
Dscam expression levels determine presynaptic arbor sizes in Drosophila sensory neurons.
Neuron. 2013 Jun 5;78(5):827-38. doi: 10.1016/j.neuron.2013.05.020.
5
Bimodal control of dendritic and axonal growth by the dual leucine zipper kinase pathway.
PLoS Biol. 2013;11(6):e1001572. doi: 10.1371/journal.pbio.1001572. Epub 2013 Jun 4.
6
The DLK signalling pathway--a double-edged sword in neural development and regeneration.
EMBO Rep. 2013 Jul;14(7):605-14. doi: 10.1038/embor.2013.64. Epub 2013 May 17.
7
DLK initiates a transcriptional program that couples apoptotic and regenerative responses to axonal injury.
Proc Natl Acad Sci U S A. 2013 Mar 5;110(10):4039-44. doi: 10.1073/pnas.1211074110. Epub 2013 Feb 19.
9
Axon injury and stress trigger a microtubule-based neuroprotective pathway.
Proc Natl Acad Sci U S A. 2012 Jul 17;109(29):11842-7. doi: 10.1073/pnas.1121180109. Epub 2012 Jun 25.
10
Dual leucine zipper kinase is required for retrograde injury signaling and axonal regeneration.
Neuron. 2012 Jun 21;74(6):1015-22. doi: 10.1016/j.neuron.2012.04.028.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验