Suppr超能文献

芽孢杆菌素和孢子形成可保护枯草芽孢杆菌免受黄色黏球菌的捕食。

Bacillaene and sporulation protect Bacillus subtilis from predation by Myxococcus xanthus.

作者信息

Müller Susanne, Strack Sarah N, Hoefler B Christopher, Straight Paul D, Kearns Daniel B, Kirby John R

机构信息

Department of Microbiology, University of Iowa, Iowa City, Iowa, USA.

Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas, USA.

出版信息

Appl Environ Microbiol. 2014 Sep;80(18):5603-10. doi: 10.1128/AEM.01621-14. Epub 2014 Jul 7.

Abstract

Myxococcus xanthus and Bacillus subtilis are common soil-dwelling bacteria that produce a wide range of secondary metabolites and sporulate under nutrient-limiting conditions. Both organisms affect the composition and dynamics of microbial communities in the soil. However, M. xanthus is known to be a predator, while B. subtilis is not. A screen of various prey led to the finding that M. xanthus is capable of consuming laboratory strains of B. subtilis, while the ancestral strain, NCIB3610, was resistant to predation. Based in part on recent characterization of several strains of B. subtilis, we were able to determine that the pks gene cluster, which is required for production of bacillaene, is the major factor allowing B. subtilis NCIB3610 cells to resist predation by M. xanthus. Furthermore, purified bacillaene was added exogenously to domesticated strains, resulting in resistance to predation. Lastly, we found that M. xanthus is incapable of consuming B. subtilis spores even from laboratory strains, indicating the evolutionary fitness of sporulation as a survival strategy. Together, the results suggest that bacillaene inhibits M. xanthus predation, allowing sufficient time for development of B. subtilis spores.

摘要

黄色粘球菌和枯草芽孢杆菌是常见的土壤细菌,它们能产生多种次生代谢产物,并在营养限制条件下形成芽孢。这两种生物都会影响土壤中微生物群落的组成和动态。然而,已知黄色粘球菌是一种捕食者,而枯草芽孢杆菌不是。对各种猎物的筛选发现,黄色粘球菌能够消耗枯草芽孢杆菌的实验室菌株,而其祖先菌株NCIB3610对捕食具有抗性。部分基于最近对几种枯草芽孢杆菌菌株的表征,我们能够确定,产生杆菌烯所需的pks基因簇是使枯草芽孢杆菌NCIB3610细胞抵抗黄色粘球菌捕食的主要因素。此外,将纯化的杆菌烯外源添加到驯化菌株中,可使其产生抗捕食能力。最后,我们发现黄色粘球菌甚至无法消耗实验室菌株的枯草芽孢杆菌孢子,这表明形成芽孢作为一种生存策略具有进化适应性。总之,这些结果表明杆菌烯可抑制黄色粘球菌的捕食,为枯草芽孢杆菌孢子的发育留出足够时间。

相似文献

1
Bacillaene and sporulation protect Bacillus subtilis from predation by Myxococcus xanthus.
Appl Environ Microbiol. 2014 Sep;80(18):5603-10. doi: 10.1128/AEM.01621-14. Epub 2014 Jul 7.
2
Predation by Myxococcus xanthus induces Bacillus subtilis to form spore-filled megastructures.
Appl Environ Microbiol. 2015 Jan;81(1):203-10. doi: 10.1128/AEM.02448-14. Epub 2014 Oct 17.
3
Identification of Functions Affecting Predator-Prey Interactions between Myxococcus xanthus and Bacillus subtilis.
J Bacteriol. 2016 Nov 18;198(24):3335-3344. doi: 10.1128/JB.00575-16. Print 2016 Dec 15.
4
Thiocillin contributes to the ecological fitness of ATCC 14579 during interspecies interactions with .
Front Microbiol. 2023 Nov 24;14:1295262. doi: 10.3389/fmicb.2023.1295262. eCollection 2023.
6
Bacillus licheniformis escapes from Myxococcus xanthus predation by deactivating myxovirescin A through enzymatic glucosylation.
Environ Microbiol. 2019 Dec;21(12):4755-4772. doi: 10.1111/1462-2920.14817. Epub 2019 Oct 28.
8
Bacterial competition reveals differential regulation of the pks genes by Bacillus subtilis.
J Bacteriol. 2014 Feb;196(4):717-28. doi: 10.1128/JB.01022-13. Epub 2013 Nov 1.
9
devI is an evolutionarily young negative regulator of Myxococcus xanthus development.
J Bacteriol. 2015 Apr;197(7):1249-62. doi: 10.1128/JB.02542-14. Epub 2015 Feb 2.
10
Deciphering the hunting strategy of a bacterial wolfpack.
FEMS Microbiol Rev. 2009 Sep;33(5):942-57. doi: 10.1111/j.1574-6976.2009.00185.x. Epub 2009 May 9.

引用本文的文献

1
Secondary Metabolites from spp. probiotics as potential treatments for multidrug-resistant pathogens: A comprehensive review.
Curr Res Microb Sci. 2025 Apr 16;8:100392. doi: 10.1016/j.crmicr.2025.100392. eCollection 2025.
3
Plipastatin is a shared good by Bacillus subtilis during combating Fusarium spp.
FEMS Microbiol Ecol. 2025 Mar 18;101(4). doi: 10.1093/femsec/fiaf020.
4
Subtilosin A production is influenced by surfactin levels in .
Microlife. 2025 Jan 2;6:uqae029. doi: 10.1093/femsml/uqae029. eCollection 2025.
6
Comparative genomic analysis of HAB-5 reveals genes associated with antimicrobial and plant growth-promoting activities.
Front Microbiol. 2024 Jun 26;15:1384691. doi: 10.3389/fmicb.2024.1384691. eCollection 2024.
7
Substrate specificity of a ketosynthase domain involved in bacillaene biosynthesis.
Beilstein J Org Chem. 2024 Apr 5;20:734-740. doi: 10.3762/bjoc.20.67. eCollection 2024.
8
Bacillus velezensis BE2 controls wheat and barley diseases by direct antagonism and induced systemic resistance.
Appl Microbiol Biotechnol. 2024 Dec;108(1):64. doi: 10.1007/s00253-023-12864-y. Epub 2024 Jan 8.
9
Genetic components of involved in its complex prey-predator interaction with .
Front Microbiol. 2023 Dec 5;14:1304874. doi: 10.3389/fmicb.2023.1304874. eCollection 2023.
10
Thiocillin contributes to the ecological fitness of ATCC 14579 during interspecies interactions with .
Front Microbiol. 2023 Nov 24;14:1295262. doi: 10.3389/fmicb.2023.1295262. eCollection 2023.

本文引用的文献

1
Widespread predatory abilities in the genus Streptomyces.
Arch Microbiol. 2014 Apr;196(4):235-48. doi: 10.1007/s00203-014-0961-7. Epub 2014 Feb 18.
2
Bacterial competition reveals differential regulation of the pks genes by Bacillus subtilis.
J Bacteriol. 2014 Feb;196(4):717-28. doi: 10.1128/JB.01022-13. Epub 2013 Nov 1.
4
A plasmid-encoded phosphatase regulates Bacillus subtilis biofilm architecture, sporulation, and genetic competence.
J Bacteriol. 2013 May;195(10):2437-48. doi: 10.1128/JB.02030-12. Epub 2013 Mar 22.
5
Sticking together: building a biofilm the Bacillus subtilis way.
Nat Rev Microbiol. 2013 Mar;11(3):157-68. doi: 10.1038/nrmicro2960. Epub 2013 Jan 28.
6
Imaging secondary metabolism of Streptomyces sp. Mg1 during cellular lysis and colony degradation of competing Bacillus subtilis.
Antonie Van Leeuwenhoek. 2012 Oct;102(3):435-45. doi: 10.1007/s10482-012-9769-0. Epub 2012 Jul 10.
7
Single nucleotide polypmorphisms of fimH associated with adherence and biofilm formation by serovars of Salmonella enterica.
Microbiology (Reading). 2011 Nov;157(Pt 11):3162-3171. doi: 10.1099/mic.0.051425-0. Epub 2011 Aug 18.
8
Antibiotic production by myxobacteria plays a role in predation.
J Bacteriol. 2011 Sep;193(18):4626-33. doi: 10.1128/JB.05052-11. Epub 2011 Jul 15.
9
Myxococcus xanthus induces actinorhodin overproduction and aerial mycelium formation by Streptomyces coelicolor.
Microb Biotechnol. 2011 Mar;4(2):175-83. doi: 10.1111/j.1751-7915.2010.00208.x. Epub 2010 Sep 27.
10
Tracing the domestication of a biofilm-forming bacterium.
J Bacteriol. 2011 Apr;193(8):2027-34. doi: 10.1128/JB.01542-10. Epub 2011 Jan 28.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验