Müller Susanne, Strack Sarah N, Ryan Sarah E, Kearns Daniel B, Kirby John R
Department of Microbiology, University of Iowa, Iowa City, Iowa, USA.
Department of Biology, Indiana University, Bloomington, Indiana, USA.
Appl Environ Microbiol. 2015 Jan;81(1):203-10. doi: 10.1128/AEM.02448-14. Epub 2014 Oct 17.
Biofilm formation is a common mechanism for surviving environmental stress and can be triggered by both intraspecies and interspecies interactions. Prolonged predator-prey interactions between the soil bacterium Myxococcus xanthus and Bacillus subtilis were found to induce the formation of a new type of B. subtilis biofilm, termed megastructures. Megastructures are tree-like brachiations that are as large as 500 μm in diameter, are raised above the surface between 150 and 200 μm, and are filled with viable endospores embedded within a dense matrix. Megastructure formation did not depend on TasA, EpsE, SinI, RemA, or surfactin production and thus is genetically distinguishable from colony biofilm formation on MSgg medium. As B. subtilis endospores are not susceptible to predation by M. xanthus, megastructures appear to provide an alternative mechanism for survival. In addition, M. xanthus fruiting bodies were found immediately adjacent to the megastructures in nearly all instances, suggesting that M. xanthus is unable to acquire sufficient nutrients from cells housed within the megastructures. Lastly, a B. subtilis mutant lacking the ability to defend itself via bacillaene production formed megastructures more rapidly than the parent. Together, the results indicate that production of the megastructure facilitates B. subtilis escape into dormancy via sporulation.
生物膜形成是一种应对环境压力的常见机制,可由种内和种间相互作用触发。研究发现,土壤细菌黄色粘球菌与枯草芽孢杆菌之间长时间的捕食者 - 猎物相互作用会诱导枯草芽孢杆菌形成一种新型生物膜,称为巨型结构。巨型结构呈树状分支,直径可达500μm,高出表面150至200μm,内部充满嵌入致密基质中的活芽孢。巨型结构的形成不依赖于TasA、EpsE、SinI、RemA或表面活性素的产生,因此在基因上与在MSgg培养基上形成的菌落生物膜不同。由于枯草芽孢杆菌芽孢不易受到黄色粘球菌的捕食,巨型结构似乎提供了一种生存的替代机制。此外,几乎在所有情况下都发现黄色粘球菌子实体紧邻巨型结构,这表明黄色粘球菌无法从巨型结构内的细胞中获取足够的营养。最后,一个缺乏通过杆菌烯产生进行自我防御能力的枯草芽孢杆菌突变体比亲本更快地形成了巨型结构。这些结果共同表明,巨型结构的产生有助于枯草芽孢杆菌通过孢子形成进入休眠状态。