Suppr超能文献

黄色粘球菌的捕食作用诱导枯草芽孢杆菌形成充满孢子的巨型结构。

Predation by Myxococcus xanthus induces Bacillus subtilis to form spore-filled megastructures.

作者信息

Müller Susanne, Strack Sarah N, Ryan Sarah E, Kearns Daniel B, Kirby John R

机构信息

Department of Microbiology, University of Iowa, Iowa City, Iowa, USA.

Department of Biology, Indiana University, Bloomington, Indiana, USA.

出版信息

Appl Environ Microbiol. 2015 Jan;81(1):203-10. doi: 10.1128/AEM.02448-14. Epub 2014 Oct 17.

Abstract

Biofilm formation is a common mechanism for surviving environmental stress and can be triggered by both intraspecies and interspecies interactions. Prolonged predator-prey interactions between the soil bacterium Myxococcus xanthus and Bacillus subtilis were found to induce the formation of a new type of B. subtilis biofilm, termed megastructures. Megastructures are tree-like brachiations that are as large as 500 μm in diameter, are raised above the surface between 150 and 200 μm, and are filled with viable endospores embedded within a dense matrix. Megastructure formation did not depend on TasA, EpsE, SinI, RemA, or surfactin production and thus is genetically distinguishable from colony biofilm formation on MSgg medium. As B. subtilis endospores are not susceptible to predation by M. xanthus, megastructures appear to provide an alternative mechanism for survival. In addition, M. xanthus fruiting bodies were found immediately adjacent to the megastructures in nearly all instances, suggesting that M. xanthus is unable to acquire sufficient nutrients from cells housed within the megastructures. Lastly, a B. subtilis mutant lacking the ability to defend itself via bacillaene production formed megastructures more rapidly than the parent. Together, the results indicate that production of the megastructure facilitates B. subtilis escape into dormancy via sporulation.

摘要

生物膜形成是一种应对环境压力的常见机制,可由种内和种间相互作用触发。研究发现,土壤细菌黄色粘球菌与枯草芽孢杆菌之间长时间的捕食者 - 猎物相互作用会诱导枯草芽孢杆菌形成一种新型生物膜,称为巨型结构。巨型结构呈树状分支,直径可达500μm,高出表面150至200μm,内部充满嵌入致密基质中的活芽孢。巨型结构的形成不依赖于TasA、EpsE、SinI、RemA或表面活性素的产生,因此在基因上与在MSgg培养基上形成的菌落生物膜不同。由于枯草芽孢杆菌芽孢不易受到黄色粘球菌的捕食,巨型结构似乎提供了一种生存的替代机制。此外,几乎在所有情况下都发现黄色粘球菌子实体紧邻巨型结构,这表明黄色粘球菌无法从巨型结构内的细胞中获取足够的营养。最后,一个缺乏通过杆菌烯产生进行自我防御能力的枯草芽孢杆菌突变体比亲本更快地形成了巨型结构。这些结果共同表明,巨型结构的产生有助于枯草芽孢杆菌通过孢子形成进入休眠状态。

相似文献

1
Predation by Myxococcus xanthus induces Bacillus subtilis to form spore-filled megastructures.
Appl Environ Microbiol. 2015 Jan;81(1):203-10. doi: 10.1128/AEM.02448-14. Epub 2014 Oct 17.
2
Bacillaene and sporulation protect Bacillus subtilis from predation by Myxococcus xanthus.
Appl Environ Microbiol. 2014 Sep;80(18):5603-10. doi: 10.1128/AEM.01621-14. Epub 2014 Jul 7.
3
Identification of Functions Affecting Predator-Prey Interactions between Myxococcus xanthus and Bacillus subtilis.
J Bacteriol. 2016 Nov 18;198(24):3335-3344. doi: 10.1128/JB.00575-16. Print 2016 Dec 15.
4
Deciphering the hunting strategy of a bacterial wolfpack.
FEMS Microbiol Rev. 2009 Sep;33(5):942-57. doi: 10.1111/j.1574-6976.2009.00185.x. Epub 2009 May 9.
5
Division of Labor in Biofilms: the Ecology of Cell Differentiation.
Microbiol Spectr. 2015 Apr;3(2):MB-0002-2014. doi: 10.1128/microbiolspec.MB-0002-2014.
6
Role of phase variation in the resistance of Myxococcus xanthus fruiting bodies to Caenorhabditis elegans predation.
J Bacteriol. 2011 Oct;193(19):5081-9. doi: 10.1128/JB.05383-11. Epub 2011 Aug 5.
7
Orphan Hybrid Histidine Protein Kinase SinK Acts as a Signal Integrator To Fine-Tune Multicellular Behavior in .
J Bacteriol. 2019 Feb 25;201(6). doi: 10.1128/JB.00561-18. Print 2019 Mar 15.
8
Production and analysis of a Bacillus subtilis biofilm comprised of vegetative cells and spores using a modified colony biofilm model.
J Microbiol Methods. 2018 May;148:181-187. doi: 10.1016/j.mimet.2018.04.011. Epub 2018 Apr 17.
9
Multicellular development in Myxococcus xanthus is stimulated by predator-prey interactions.
J Bacteriol. 2007 Aug;189(15):5675-82. doi: 10.1128/JB.00544-07. Epub 2007 May 18.
10
[Biofilm formation dominated by sophisticated social behaviors in Myxococcus xanthus].
Sheng Wu Gong Cheng Xue Bao. 2017 Sep 25;33(9):1582-1595. doi: 10.13345/j.cjb.170201.

引用本文的文献

3
Siderophores and competition for iron govern myxobacterial predation dynamics.
ISME J. 2024 Jan 8;18(1). doi: 10.1093/ismejo/wrae077.
4
Thiocillin contributes to the ecological fitness of ATCC 14579 during interspecies interactions with .
Front Microbiol. 2023 Nov 24;14:1295262. doi: 10.3389/fmicb.2023.1295262. eCollection 2023.
5
Interactions of Different Species and Affect Development and Induce the Production of DK-Xanthenes.
Int J Mol Sci. 2023 Oct 27;24(21):15659. doi: 10.3390/ijms242115659.
6
Transcriptomic response of to the predatory attack of .
Front Microbiol. 2023 Jun 19;14:1213659. doi: 10.3389/fmicb.2023.1213659. eCollection 2023.
7
Lysis profile and preference of sp. PT13 for typical soil bacteria.
Front Microbiol. 2023 Jun 12;14:1211756. doi: 10.3389/fmicb.2023.1211756. eCollection 2023.
8
Predatory Strategies of : Prey Susceptibility to OMVs and Moonlighting Enzymes.
Microorganisms. 2023 Mar 29;11(4):874. doi: 10.3390/microorganisms11040874.
9
New Thoughts on an Old Topic: Secrets of Bacterial Spore Resistance Slowly Being Revealed.
Microbiol Mol Biol Rev. 2023 Jun 28;87(2):e0008022. doi: 10.1128/mmbr.00080-22. Epub 2023 Mar 16.

本文引用的文献

1
Bacillaene and sporulation protect Bacillus subtilis from predation by Myxococcus xanthus.
Appl Environ Microbiol. 2014 Sep;80(18):5603-10. doi: 10.1128/AEM.01621-14. Epub 2014 Jul 7.
2
Rhizobial galactoglucan determines the predatory pattern of Myxococcus xanthus and protects Sinorhizobium meliloti from predation.
Environ Microbiol. 2014 Jul;16(7):2341-50. doi: 10.1111/1462-2920.12477. Epub 2014 Apr 28.
3
Interactions in multispecies biofilms: do they actually matter?
Trends Microbiol. 2014 Feb;22(2):84-91. doi: 10.1016/j.tim.2013.12.004. Epub 2014 Jan 15.
5
Sticking together: building a biofilm the Bacillus subtilis way.
Nat Rev Microbiol. 2013 Mar;11(3):157-68. doi: 10.1038/nrmicro2960. Epub 2013 Jan 28.
6
Myxobacterial tools for social interactions.
Res Microbiol. 2012 Nov-Dec;163(9-10):579-91. doi: 10.1016/j.resmic.2012.10.022. Epub 2012 Nov 2.
7
Predatory activity of Myxococcus xanthus outer-membrane vesicles and properties of their hydrolase cargo.
Microbiology (Reading). 2012 Nov;158(Pt 11):2742-2752. doi: 10.1099/mic.0.060343-0. Epub 2012 Sep 13.
8
Imaging secondary metabolism of Streptomyces sp. Mg1 during cellular lysis and colony degradation of competing Bacillus subtilis.
Antonie Van Leeuwenhoek. 2012 Oct;102(3):435-45. doi: 10.1007/s10482-012-9769-0. Epub 2012 Jul 10.
9
Interspecies interactions that result in Bacillus subtilis forming biofilms are mediated mainly by members of its own genus.
Proc Natl Acad Sci U S A. 2011 Nov 29;108(48):E1236-43. doi: 10.1073/pnas.1103630108. Epub 2011 Nov 10.
10
Antibiotic production by myxobacteria plays a role in predation.
J Bacteriol. 2011 Sep;193(18):4626-33. doi: 10.1128/JB.05052-11. Epub 2011 Jul 15.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验