Suppr超能文献

质子转移是孤立铬(III)硅酸盐上乙烯聚合的关键基元步骤。

Proton transfers are key elementary steps in ethylene polymerization on isolated chromium(III) silicates.

机构信息

Department of Chemistry and Applied Biosciences, Eidgenössische Technische Hochschule Zürich, CH-8093 Zürich, Switzerland;

Laboratoire de Chimie Catalyse Polymères et Procédés, Unité Mixte de Recherche 5265, Université de Lyon, 69616 Villeurbanne, France; and.

出版信息

Proc Natl Acad Sci U S A. 2014 Aug 12;111(32):11624-9. doi: 10.1073/pnas.1405314111. Epub 2014 Jul 7.

Abstract

Mononuclear Cr(III) surface sites were synthesized from grafting [Cr(OSi(O(t)Bu)3)3(tetrahydrofurano)2] on silica partially dehydroxylated at 700 °C, followed by a thermal treatment under vacuum, and characterized by infrared, ultraviolet-visible, electron paramagnetic resonance (EPR), and X-ray absorption spectroscopy (XAS). These sites are highly active in ethylene polymerization to yield polyethylene with a broad molecular weight distribution, similar to that typically obtained from the Phillips catalyst. CO binding, EPR spectroscopy, and poisoning studies indicate that two different types of Cr(III) sites are present on the surface, one of which is active in polymerization. Density functional theory (DFT) calculations using cluster models show that active sites are tricoordinated Cr(III) centers and that the presence of an additional siloxane bridge coordinated to Cr leads to inactive species. From IR spectroscopy and DFT calculations, these tricoordinated Cr(III) sites initiate and regulate the polymer chain length via unique proton transfer steps in polymerization catalysis.

摘要

单核 Cr(III) 表面位是通过在 700°C 下部分脱羟的二氧化硅上接枝[Cr(OSi(O(t)Bu)3)3(tetrahydrofurano)2]合成的,然后在真空中进行热处理,并通过红外、紫外-可见、电子顺磁共振(EPR)和 X 射线吸收光谱(XAS)进行表征。这些活性位在乙烯聚合中非常活跃,可得到具有较宽分子量分布的聚乙烯,类似于通常从菲利普斯催化剂获得的聚乙烯。CO 结合、EPR 光谱和中毒研究表明,表面上存在两种不同类型的 Cr(III)位,其中一种在聚合中具有活性。使用团簇模型的密度泛函理论(DFT)计算表明,活性位是三配位的 Cr(III)中心,而与 Cr 配位的额外硅氧烷桥的存在导致非活性物种。从红外光谱和 DFT 计算可以看出,这些三配位的 Cr(III)位通过聚合催化中独特的质子转移步骤引发并调节聚合物链长。

相似文献

1
Proton transfers are key elementary steps in ethylene polymerization on isolated chromium(III) silicates.
Proc Natl Acad Sci U S A. 2014 Aug 12;111(32):11624-9. doi: 10.1073/pnas.1405314111. Epub 2014 Jul 7.
2
Mechanistic Insights of Ethylene Polymerization on Phillips Chromium Catalysts.
Polymers (Basel). 2024 Mar 2;16(5):681. doi: 10.3390/polym16050681.
4
Active Sites in Cr(III)-Based Ethylene Polymerization Catalysts from Machine-Learning-Supported XAS and EPR Spectroscopy.
Angew Chem Int Ed Engl. 2024 Jan 2;63(1):e202313348. doi: 10.1002/anie.202313348. Epub 2023 Nov 29.
5
Local Structures and Heterogeneity of Silica-Supported M(III) Sites Evidenced by EPR, IR, NMR, and Luminescence Spectroscopies.
J Am Chem Soc. 2017 Jul 5;139(26):8855-8867. doi: 10.1021/jacs.7b02179. Epub 2017 Jun 21.
7
Polymerization of ethylene by silica-supported dinuclear Cr(III) sites through an initiation step involving C-H bond activation.
Angew Chem Int Ed Engl. 2014 Feb 10;53(7):1872-6. doi: 10.1002/anie.201308983. Epub 2014 Jan 21.
8
Union carbide polymerization catalysts: from uncovering active site structures to designing molecularly-defined analogs.
Chem Sci. 2022 Sep 15;13(37):11091-11098. doi: 10.1039/d2sc04235e. eCollection 2022 Sep 28.
10
Synthesis, spectroscopy and catalysis of.
Chemistry. 2000 Aug 18;6(16):2960-70. doi: 10.1002/1521-3765(20000818)6:16<2960::aid-chem2960>3.0.co;2-7.

引用本文的文献

1
Mechanistic Insights of Ethylene Polymerization on Phillips Chromium Catalysts.
Polymers (Basel). 2024 Mar 2;16(5):681. doi: 10.3390/polym16050681.
3
Union carbide polymerization catalysts: from uncovering active site structures to designing molecularly-defined analogs.
Chem Sci. 2022 Sep 15;13(37):11091-11098. doi: 10.1039/d2sc04235e. eCollection 2022 Sep 28.
5
Strain in Silica-Supported Ga(III) Sites: Neither Too Much nor Too Little for Propane Dehydrogenation Catalytic Activity.
Inorg Chem. 2021 May 17;60(10):6865-6874. doi: 10.1021/acs.inorgchem.0c03135. Epub 2021 Feb 5.
7
Tuning the Redox Chemistry of a Cr/SiO Phillips Catalyst for Controlling Activity, Induction Period and Polymer Properties.
Chemphyschem. 2020 Aug 4;21(15):1665-1674. doi: 10.1002/cphc.202000488. Epub 2020 Jul 6.
8
Silica-supported isolated gallium sites as highly active, selective and stable propane dehydrogenation catalysts.
Chem Sci. 2017 Apr 1;8(4):2661-2666. doi: 10.1039/c6sc05178b. Epub 2017 Jan 3.
9
Magnetic Memory from Site Isolated Dy(III) on Silica Materials.
ACS Cent Sci. 2017 Mar 22;3(3):244-249. doi: 10.1021/acscentsci.7b00035. Epub 2017 Feb 22.
10
Polyethylene with Reverse Co-monomer Incorporation: From an Industrial Serendipitous Discovery to Fundamental Understanding.
Angew Chem Int Ed Engl. 2015 Oct 26;54(44):13073-9. doi: 10.1002/anie.201506718. Epub 2015 Sep 9.

本文引用的文献

1
Polymerization of ethylene by silica-supported dinuclear Cr(III) sites through an initiation step involving C-H bond activation.
Angew Chem Int Ed Engl. 2014 Feb 10;53(7):1872-6. doi: 10.1002/anie.201308983. Epub 2014 Jan 21.
2
Mechanistic Studies of Ethylene and α-Olefin Co-oligomerization Catalyzed by Chromium-PNP Complexes.
Organometallics. 2012 Jul 23;31(14):5143-5149. doi: 10.1021/om300492r.
3
C-H bond activation in transition metal species from a computational perspective.
Chem Rev. 2010 Feb 10;110(2):749-823. doi: 10.1021/cr900315k.
9
X-ray absorption spectroscopic and electrochemical studies of tris(catecholato(2-))chromate(V/IV/III) complexes.
Angew Chem Int Ed Engl. 2004 Jan 16;43(4):462-5. doi: 10.1002/anie.200352418.
10
Catalysts for the living insertion polymerization of alkenes: access to new polyolefin architectures using Ziegler-Natta chemistry.
Angew Chem Int Ed Engl. 2002 Jul 2;41(13):2237-57. doi: 10.1002/1521-3773(20020703)41:13<2236::AID-ANIE2236>3.0.CO;2-3.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验