Agapie Theodor, Labinger Jay A, Bercaw John E
Arnold and Mabel Beckman Laboratories of Chemical Synthesis, California Institute of Technology, Pasadena, California 91125, USA.
J Am Chem Soc. 2007 Nov 21;129(46):14281-95. doi: 10.1021/ja073493h. Epub 2007 Oct 31.
A system for catalytic trimerization of ethylene utilizing chromium(III) precursors supported by diphosphine ligand PNP(O4) = (o-MeO-C6H4)2PN(Me)P(o-MeO-C6H4)2 has been investigated. The mechanism of the olefin trimerization reaction was examined using deuterium labeling and studies of reactions with alpha-olefins and internal olefins. A well-defined chromium precursor utilized in this studies is Cr(PNP(O4))(o,o'-biphenyldiyl)Br. A cationic species, obtained by halide abstraction with NaB[C6H3(CF3)2]4, is required for catalytic turnover to generate 1-hexene from ethylene. The initiation byproduct is vinylbiphenyl; this is formed even without activation by halide abstraction. Trimerization of 2-butyne is accomplished by the same cationic system but not by the neutral species. Catalytic trimerization, with various (PNP(O4))Cr precursors, of a 1:1 mixture of C2D4 and C2H4 gives isotopologs of 1-hexene without H/D scrambling (C6D12, C6D8H4, C6D4H8, and C6H12 in a 1:3:3:1 ratio). The lack of crossover supports a mechanism involving metallacyclic intermediates. Using a SHOP catalyst to perform the oligomerization of a 1:1 mixture of C2D4 and C2H4 leads to the generation of a broader distribution of 1-hexene isotopologs, consistent with a Cossee-type mechanism for 1-hexene formation. The ethylene trimerization reaction was further studied by the reaction of trans-, cis-, and gem-ethylene-d2 upon activation of Cr(PNP(O4))(o,o'-biphenyldiyl)Br with NaB[C6H3(CF3)2]4. The trimerization of cis- and trans-ethylene-d2 generates 1-hexene isotopomers having terminal CDH groups, with an isotope effect of 3.1(1) and 4.1(1), respectively. These results are consistent with reductive elimination of 1-hexene from a putative Cr(H)[(CH2)4CH=CH2] occurring much faster than a hydride 2,1-insertion or with concerted 1-hexene formation from a chromacycloheptane via a 3,7-H shift. The trimerization of gem-ethylene-d2 has an isotope effect of 1.3(1), consistent with irreversible formation of a chromacycloheptane intermediate on route to 1-hexene formation. Reactions of olefins with a model of a chromacyclopentane were investigated starting from Cr(PNP(O4))(o,o'-biphenyldiyl)Br. alpha-Olefins react with cationic biphenyldiyl chromium species to generate products from 1,2-insertion. A study of the reaction of 2-butenes indicated that beta-H elimination occurs preferentially from the ring CH rather than exo-CH bond in the metallacycloheptane intermediates. A study of cotrimerization of ethylene with propylene correlates with these findings of regioselectivity. Competition experiments with mixtures of two olefins indicate that the relative insertion rates generally decrease with increasing size of the olefins.
对一种利用双膦配体PNP(O4) = (o-MeO-C6H4)2PN(Me)P(o-MeO-C6H4)2负载的铬(III)前体进行乙烯催化三聚的体系进行了研究。使用氘标记以及对与α-烯烃和内烯烃的反应进行研究,考察了烯烃三聚反应的机理。本研究中使用的一种明确的铬前体是Cr(PNP(O4))(o,o'-联苯二基)Br。为了从乙烯催化生成1-己烯,需要通过用NaB[C6H3(CF3)2]4进行卤化物抽取得到的阳离子物种来实现催化周转。引发副产物是乙烯基联苯;即使没有通过卤化物抽取进行活化也会形成。2-丁炔的三聚反应由相同的阳离子体系完成,但不由中性物种完成。使用各种(PNP(O4))Cr前体对C2D4和C2H4的1:1混合物进行催化三聚反应,得到1-己烯的同位素异构体,且没有H/D交换(C6D12、C6D8H4、C6D4H8和C6H12的比例为1:3:3:1)。缺乏交叉现象支持了一种涉及金属环中间体的机理。使用SHOP催化剂对C2D4和C2H4的1:1混合物进行齐聚反应,导致生成更广泛分布的1-己烯同位素异构体,这与1-己烯形成的科塞型机理一致。通过用NaB[C6H3(CF3)2]4活化Cr(PNP(O4))(o,o'-联苯二基)Br后,研究了反式、顺式和偕二氘代乙烯的反应,进一步研究了乙烯三聚反应。顺式和反式二氘代乙烯的三聚反应生成具有末端CDH基团的1-己烯同位素异构体,同位素效应分别为3.1(1)和4.1(1)。这些结果与从假定的Cr(H)[(CH2)4CH=CH2]还原消除1-己烯的速度比氢化物2,1-插入快得多一致,或者与通过3,7-H迁移从铬环庚烷协同形成1-己烯一致。偕二氘代乙烯的三聚反应的同位素效应为1.3(1),与在生成1-己烯的途径中不可逆地形成铬环庚烷中间体一致。从Cr(PNP(O4))(o,o'-联苯二基)Br开始,研究了烯烃与铬环戊烷模型的反应。α-烯烃与阳离子联苯二基铬物种反应,通过1,2-插入生成产物。对2-丁烯反应的研究表明,在金属环庚烷中间体中,β-H消除优先发生在环CH而非外环CH键上。乙烯与丙烯的共三聚反应研究与这些区域选择性发现相关。用两种烯烃混合物进行的竞争实验表明,相对插入速率通常随着烯烃尺寸的增加而降低。