Suppr超能文献

新型抗焦虑药物 ML297 激活 G 蛋白门控内向整流钾 (GIRK) 通道的机制。

Mechanisms underlying the activation of G-protein-gated inwardly rectifying K+ (GIRK) channels by the novel anxiolytic drug, ML297.

机构信息

Departments of Pharmacology and.

Department of Pharmacology, Vanderbilt University, Nashville, TN 37232.

出版信息

Proc Natl Acad Sci U S A. 2014 Jul 22;111(29):10755-60. doi: 10.1073/pnas.1405190111. Epub 2014 Jul 7.

Abstract

ML297 was recently identified as a potent and selective small molecule agonist of G-protein-gated inwardly rectifying K(+) (GIRK/Kir3) channels. Here, we show ML297 selectively activates recombinant neuronal GIRK channels containing the GIRK1 subunit in a manner that requires phosphatidylinositol-4,5-bisphosphate (PIP2), but is otherwise distinct from receptor-induced, G-protein-dependent channel activation. Two amino acids unique to the pore helix (F137) and second membrane-spanning (D173) domain of GIRK1 were identified as necessary and sufficient for the selective activation of GIRK channels by ML297. Further investigation into the behavioral effects of ML297 revealed that in addition to its known antiseizure efficacy, ML297 decreases anxiety-related behavior without sedative or addictive liabilities. Importantly, the anxiolytic effect of ML297 was lost in mice lacking GIRK1. Thus, activation of GIRK1-containing channels by ML297 or derivatives may represent a new approach to the treatment of seizure and/or anxiety disorders.

摘要

ML297 最近被鉴定为一种强效且选择性的 G 蛋白门控内向整流钾 (GIRK/Kir3) 通道小分子激动剂。在这里,我们表明 ML297 以需要磷脂酰肌醇-4,5-二磷酸 (PIP2) 的方式选择性地激活含有 GIRK1 亚基的重组神经元 GIRK 通道,但与受体诱导的、G 蛋白依赖性通道激活不同。GIRK1 的孔螺旋 (F137) 和第二跨膜 (D173) 结构域中两个独特的氨基酸被鉴定为 ML297 选择性激活 GIRK 通道所必需且充分的条件。对 ML297 的行为效应的进一步研究表明,除了其已知的抗惊厥功效外,ML297 还可降低焦虑相关行为,而无镇静或成瘾性。重要的是,在缺乏 GIRK1 的小鼠中,ML297 的抗焦虑作用丧失。因此,通过 ML297 或其衍生物激活包含 GIRK1 的通道可能代表治疗癫痫发作和/或焦虑障碍的新方法。

相似文献

1
Mechanisms underlying the activation of G-protein-gated inwardly rectifying K+ (GIRK) channels by the novel anxiolytic drug, ML297.
Proc Natl Acad Sci U S A. 2014 Jul 22;111(29):10755-60. doi: 10.1073/pnas.1405190111. Epub 2014 Jul 7.
3
Antinociceptive effect of selective G protein-gated inwardly rectifying K+ channel agonist ML297 in the rat spinal cord.
PLoS One. 2020 Sep 11;15(9):e0239094. doi: 10.1371/journal.pone.0239094. eCollection 2020.
4
The small molecule GAT1508 activates brain-specific GIRK1/2 channel heteromers and facilitates conditioned fear extinction in rodents.
J Biol Chem. 2020 Mar 13;295(11):3614-3634. doi: 10.1074/jbc.RA119.011527. Epub 2020 Jan 17.
7
Structural elements in the Girk1 subunit that potentiate G protein-gated potassium channel activity.
Proc Natl Acad Sci U S A. 2012 Dec 26;109(52):21492-7. doi: 10.1073/pnas.1212019110. Epub 2012 Dec 10.
8
Bidirectional Influence of Limbic GIRK Channel Activation on Innate Avoidance Behavior.
J Neurosci. 2021 Jul 7;41(27):5809-5821. doi: 10.1523/JNEUROSCI.2787-20.2021.

引用本文的文献

2
Tolerance in Thalamic Paraventricular Nucleus Neurons Following Chronic Treatment of Animals with Morphine.
eNeuro. 2025 Jun 11;12(6). doi: 10.1523/ENEURO.0249-24.2025. Print 2025 Jun.
4
Receptor-dependent influence of R7 RGS proteins on neuronal GIRK channel signaling dynamics.
Prog Neurobiol. 2024 Dec;243:102686. doi: 10.1016/j.pneurobio.2024.102686. Epub 2024 Nov 13.
5
Molecular mechanism of GIRK2 channel gating modulated by cholesteryl hemisuccinate.
Front Physiol. 2024 Oct 18;15:1486362. doi: 10.3389/fphys.2024.1486362. eCollection 2024.
6
Direct modulation of G protein-gated inwardly rectifying potassium (GIRK) channels.
Front Physiol. 2024 Jun 6;15:1386645. doi: 10.3389/fphys.2024.1386645. eCollection 2024.
7
A bistable inhibitory optoGPCR for multiplexed optogenetic control of neural circuits.
Nat Methods. 2024 Jul;21(7):1275-1287. doi: 10.1038/s41592-024-02285-8. Epub 2024 May 29.
9
A muscarinic, GIRK channel-mediated inhibition of inspiratory-related XII nerve motor output emerges in early postnatal development in mice.
J Appl Physiol (1985). 2023 Nov 1;135(5):1041-1052. doi: 10.1152/japplphysiol.00042.2023. Epub 2023 Sep 28.
10
A bistable inhibitory OptoGPCR for multiplexed optogenetic control of neural circuits.
bioRxiv. 2023 Jul 2:2023.07.01.547328. doi: 10.1101/2023.07.01.547328.

本文引用的文献

1
New insights into the therapeutic potential of Girk channels.
Trends Neurosci. 2014 Jan;37(1):20-9. doi: 10.1016/j.tins.2013.10.006. Epub 2013 Nov 21.
2
Molecular mechanism underlying ethanol activation of G-protein-gated inwardly rectifying potassium channels.
Proc Natl Acad Sci U S A. 2013 Nov 5;110(45):18309-14. doi: 10.1073/pnas.1311406110. Epub 2013 Oct 21.
4
Discovery of 'molecular switches' within a GIRK activator scaffold that afford selective GIRK inhibitors.
Bioorg Med Chem Lett. 2013 Aug 15;23(16):4562-6. doi: 10.1016/j.bmcl.2013.06.023. Epub 2013 Jun 20.
5
X-ray structure of the mammalian GIRK2-βγ G-protein complex.
Nature. 2013 Jun 13;498(7453):190-7. doi: 10.1038/nature12241. Epub 2013 Jun 5.
7
Structural elements in the Girk1 subunit that potentiate G protein-gated potassium channel activity.
Proc Natl Acad Sci U S A. 2012 Dec 26;109(52):21492-7. doi: 10.1073/pnas.1212019110. Epub 2012 Dec 10.
10
Naringin directly activates inwardly rectifying potassium channels at an overlapping binding site to tertiapin-Q.
Br J Pharmacol. 2011 Jul;163(5):1017-33. doi: 10.1111/j.1476-5381.2011.01315.x.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验