Wang Zhi-Cheng, Wu Xiao-Bei
College of Electronics and Information Engineering, Tongji University, Shanghai 201804, China.
ScientificWorldJournal. 2014;2014:672983. doi: 10.1155/2014/672983. Epub 2014 Jun 3.
Biogeography-based optimization (BBO) is a relatively new bioinspired heuristic for global optimization based on the mathematical models of biogeography. By investigating the applicability and performance of BBO for integer programming, we find that the original BBO algorithm does not perform well on a set of benchmark integer programming problems. Thus we modify the mutation operator and/or the neighborhood structure of the algorithm, resulting in three new BBO-based methods, named BlendBBO, BBO_DE, and LBBO_LDE, respectively. Computational experiments show that these methods are competitive approaches to solve integer programming problems, and the LBBO_LDE shows the best performance on the benchmark problems.
基于生物地理学的优化算法(BBO)是一种相对较新的受生物启发的全局优化启发式算法,它基于生物地理学的数学模型。通过研究BBO在整数规划中的适用性和性能,我们发现原始的BBO算法在一组基准整数规划问题上表现不佳。因此,我们修改了算法的变异算子和/或邻域结构,得到了三种基于BBO的新方法,分别命名为混合BBO(BlendBBO)、BBO_DE和LBBO_LDE。计算实验表明,这些方法是解决整数规划问题的有竞争力的方法,并且LBBO_LDE在基准问题上表现出最佳性能。