Suppr超能文献

基于资源分配的大规模全局优化的选择性生物地理学优化器。

A Selective Biogeography-Based Optimizer Considering Resource Allocation for Large-Scale Global Optimization.

机构信息

College of Electronics and Information Engineering, Tongji University, Shanghai 201804, China.

Shanghai Institute of Intelligent Science and Technology, Tongji University, Shanghai 201804, China.

出版信息

Comput Intell Neurosci. 2019 Jul 10;2019:1240162. doi: 10.1155/2019/1240162. eCollection 2019.

Abstract

Biogeography-based optimization (BBO), a recent proposed metaheuristic algorithm, has been successfully applied to many optimization problems due to its simplicity and efficiency. However, BBO is sensitive to the curse of dimensionality; its performance degrades rapidly as the dimensionality of the search space increases. In this paper, a selective migration operator is proposed to scale up the performance of BBO and we name it selective BBO (SBBO). The differential migration operator is selected heuristically to explore the global area as far as possible whist the normal distributed migration operator is chosen to exploit the local area. By the means of heuristic selection, an appropriate migration operator can be used to search the global optimum efficiently. Moreover, the strategy of cooperative coevolution (CC) is adopted to solve large-scale global optimization problems (LSOPs). To deal with subgroup imbalance contribution to the whole solution in the context of CC, a more efficient computing resource allocation is proposed. Extensive experiments are conducted on the CEC 2010 benchmark suite for large-scale global optimization, and the results show the effectiveness and efficiency of SBBO compared with BBO variants and other representative algorithms for LSOPs. Also, the results confirm that the proposed computing resource allocation is vital to the large-scale optimization within the limited computation budget.

摘要

基于生物地理学的优化(BBO)是一种最近提出的元启发式算法,由于其简单性和效率,已成功应用于许多优化问题。然而,BBO 对维数的诅咒很敏感;随着搜索空间维数的增加,其性能迅速下降。在本文中,提出了一种选择性迁移算子来提高 BBO 的性能,我们称之为选择性 BBO(SBBO)。差分迁移算子被启发式地选择以尽可能远地探索全局区域,而正态分布迁移算子被选择以利用局部区域。通过启发式选择,可以使用适当的迁移算子来有效地搜索全局最优解。此外,采用协同进化(CC)策略来解决大规模全局优化问题(LSOP)。为了解决 CC 中分组不平衡对整体解的贡献问题,提出了一种更有效的计算资源分配。在 CEC 2010 基准套件上进行了大量的大规模全局优化实验,结果表明 SBBO 与 BBO 变体和其他代表性 LSOP 算法相比具有有效性和高效性。此外,结果证实了所提出的计算资源分配对于在有限的计算预算内进行大规模优化至关重要。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3ea5/6652092/8205a6bb065d/CIN2019-1240162.001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验