Dalian University of Technology, Dalian, China.
Key Lab. of Machine Perception (MOE), School of EECS, Peking University, Beijing, China.
Neural Netw. 2014 Nov;59:1-15. doi: 10.1016/j.neunet.2014.06.005. Epub 2014 Jun 25.
Markov Random Walks (MRW) has proven to be an effective way to understand spectral clustering and embedding. However, due to less global structural measure, conventional MRW (e.g., the Gaussian kernel MRW) cannot be applied to handle data points drawn from a mixture of subspaces. In this paper, we introduce a regularized MRW learning model, using a low-rank penalty to constrain the global subspace structure, for subspace clustering and estimation. In our framework, both the local pairwise similarity and the global subspace structure can be learnt from the transition probabilities of MRW. We prove that under some suitable conditions, our proposed local/global criteria can exactly capture the multiple subspace structure and learn a low-dimensional embedding for the data, in which giving the true segmentation of subspaces. To improve robustness in real situations, we also propose an extension of the MRW learning model based on integrating transition matrix learning and error correction in a unified framework. Experimental results on both synthetic data and real applications demonstrate that our proposed MRW learning model and its robust extension outperform the state-of-the-art subspace clustering methods.
马尔可夫随机游走(MRW)已被证明是理解谱聚类和嵌入的有效方法。然而,由于缺乏全局结构度量,传统的 MRW(例如,高斯核 MRW)不能应用于处理来自混合子空间的数据点。在本文中,我们引入了一种正则化的 MRW 学习模型,使用低秩惩罚来约束全局子空间结构,用于子空间聚类和估计。在我们的框架中,MRW 的转移概率可以同时学习局部成对相似度和全局子空间结构。我们证明,在一些合适的条件下,我们提出的局部/全局准则可以准确地捕捉到多个子空间结构,并为数据学习一个低维嵌入,从而给出子空间的真实分割。为了提高实际情况下的鲁棒性,我们还提出了一种基于在统一框架中集成转移矩阵学习和错误校正的 MRW 学习模型扩展。在合成数据和实际应用上的实验结果表明,我们提出的 MRW 学习模型及其鲁棒扩展优于最新的子空间聚类方法。