Suppr超能文献

指数族分布子空间上的变分贝叶斯混合模型。

Variational Bayesian mixture model on a subspace of exponential family distributions.

作者信息

Watanabe Kazuho, Akaho Shotaro, Omachi Shinichiro, Okada Masato

机构信息

Nara Instituteof Science and Technology, Nara 630-0192, Japan.

出版信息

IEEE Trans Neural Netw. 2009 Nov;20(11):1783-96. doi: 10.1109/TNN.2009.2029694. Epub 2009 Sep 18.

Abstract

Exponential principal component analysis (e-PCA) has been proposed to reduce the dimension of the parameters of probability distributions using Kullback information as a distance between two distributions. It also provides a framework for dealing with various data types such as binary and integer for which the Gaussian assumption on the data distribution is inappropriate. In this paper, we introduce a latent variable model for the e-PCA. Assuming the discrete distribution on the latent variable leads to mixture models with constraint on their parameters. This provides a framework for clustering on the lower dimensional subspace of exponential family distributions. We derive a learning algorithm for those mixture models based on the variational Bayes (VB) method. Although intractable integration is required to implement the algorithm for a subspace, an approximation technique using Laplace's method allows us to carry out clustering on an arbitrary subspace. Combined with the estimation of the subspace, the resulting algorithm performs simultaneous dimensionality reduction and clustering. Numerical experiments on synthetic and real data demonstrate its effectiveness for extracting the structures of data as a visualization technique and its high generalization ability as a density estimation model.

摘要

指数主成分分析(e-PCA)已被提出,用于使用库尔贝克信息作为两个分布之间的距离来降低概率分布参数的维度。它还提供了一个处理各种数据类型(如二进制和整数数据)的框架,对于这些数据类型,对数据分布的高斯假设是不合适的。在本文中,我们为e-PCA引入了一个潜在变量模型。假设潜在变量上的离散分布会导致其参数受约束的混合模型。这为指数族分布的低维子空间上的聚类提供了一个框架。我们基于变分贝叶斯(VB)方法为这些混合模型推导了一种学习算法。虽然为子空间实现该算法需要进行难处理的积分,但使用拉普拉斯方法的近似技术使我们能够在任意子空间上进行聚类。结合子空间的估计,所得算法可同时进行降维和聚类。对合成数据和真实数据的数值实验证明了其作为一种可视化技术在提取数据结构方面的有效性,以及作为一种密度估计模型的高泛化能力。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验