Bricker William P, Lo Cynthia S
Department of Energy, Environmental and Chemical Engineering, Washington University , Saint Louis, Missouri 63130, United States.
J Phys Chem B. 2014 Aug 7;118(31):9141-54. doi: 10.1021/jp5017054. Epub 2014 Jul 24.
We modeled excitation energy transfer (EET) in the peridinin-chlorophyll a-protein (PCP) complex of dinoflagellate Amphidinium carterae to determine which pathways contribute dominantly to the high efficiency of this process. We used complete active space configuration interaction (CAS-CI) to calculate electronic structure properties of the peridinin (PID) and chlorophyll a (CLA) pigments in PCP and the transition density cube (TDC) method to calculate Coulombic couplings between energy transfer donors and acceptors. Our calculations show that the S1 → Qy EET pathway from peridinin to chlorophyll a is the dominant energy transfer pathway in PCP, with two sets of interactions-between PID612 and CLA601 and between PID622 and CLA602-contributing most strongly. EET lifetimes for these two interactions were calculated to be 2.66 and 2.90, with quantum efficiencies of 85.75 and 84.65%, respectively. The calculated Coulombic couplings for EET between two peridinin molecules in the strongly allowed S2 excited states are extremely large and suggest excitonic coupling between pairs of peridinin S2 states. This methodology is also broadly applicable to the study of EET in other photosynthetic complexes and/or organic photovoltaics, where both single and double excitations are present and donor and acceptor molecules are tightly packed.
我们对海洋双鞭毛虫卡特亚双鞭藻的多甲藻素 - 叶绿素a - 蛋白(PCP)复合物中的激发能量转移(EET)进行了建模,以确定哪些途径对该过程的高效率起主要作用。我们使用完全活性空间组态相互作用(CAS - CI)来计算PCP中多甲藻素(PID)和叶绿素a(CLA)色素的电子结构性质,并使用跃迁密度立方体(TDC)方法来计算能量转移供体和受体之间的库仑耦合。我们的计算表明,从多甲藻素到叶绿素a的S1→Qy EET途径是PCP中的主要能量转移途径,其中两组相互作用——PID612与CLA601之间以及PID622与CLA602之间——贡献最为显著。这两种相互作用的EET寿命计算值分别为2.66和2.90,量子效率分别为85.75%和84.65%。在强允许的S2激发态下,两个多甲藻素分子之间EET的计算库仑耦合极大,表明多甲藻素S2态对之间存在激子耦合。这种方法也广泛适用于研究其他光合复合物和/或有机光伏中的EET,其中同时存在单重和双重激发,且供体和受体分子紧密堆积。