Suppr超能文献

医学图像数据基于最优核函数流形嵌入的框架。

A framework for optimal kernel-based manifold embedding of medical image data.

机构信息

Information and Communication Technologies Department, Universitat Pompeu Fabra, Barcelona, Spain.

Information and Communication Technologies Department, Universitat Pompeu Fabra, Barcelona, Spain.

出版信息

Comput Med Imaging Graph. 2015 Apr;41:93-107. doi: 10.1016/j.compmedimag.2014.06.001. Epub 2014 Jun 9.

Abstract

Kernel-based dimensionality reduction is a widely used technique in medical image analysis. To fully unravel the underlying nonlinear manifold the selection of an adequate kernel function and of its free parameters is critical. In practice, however, the kernel function is generally chosen as Gaussian or polynomial and such standard kernels might not always be optimal for a given image dataset or application. In this paper, we present a study on the effect of the kernel functions in nonlinear manifold embedding of medical image data. To this end, we first carry out a literature review on existing advanced kernels developed in the statistics, machine learning, and signal processing communities. In addition, we implement kernel-based formulations of well-known nonlinear dimensional reduction techniques such as Isomap and Locally Linear Embedding, thus obtaining a unified framework for manifold embedding using kernels. Subsequently, we present a method to automatically choose a kernel function and its associated parameters from a pool of kernel candidates, with the aim to generate the most optimal manifold embeddings. Furthermore, we show how the calculated selection measures can be extended to take into account the spatial relationships in images, or used to combine several kernels to further improve the embedding results. Experiments are then carried out on various synthetic and phantom datasets for numerical assessment of the methods. Furthermore, the workflow is applied to real data that include brain manifolds and multispectral images to demonstrate the importance of the kernel selection in the analysis of high-dimensional medical images.

摘要

基于核的降维是医学图像分析中广泛使用的技术。为了充分揭示潜在的非线性流形,选择合适的核函数及其自由参数至关重要。然而,在实践中,核函数通常被选为高斯核或多项式核,而这些标准核对于给定的图像数据集或应用可能并不总是最优的。在本文中,我们研究了核函数在医学图像数据的非线性流形嵌入中的作用。为此,我们首先对统计、机器学习和信号处理领域中现有的先进核进行了文献综述。此外,我们还实现了基于核的著名非线性降维技术,如 Isomap 和局部线性嵌入的公式,从而获得了使用核进行流形嵌入的统一框架。随后,我们提出了一种从核候选池中自动选择核函数及其相关参数的方法,旨在生成最优化的流形嵌入。此外,我们展示了如何扩展计算出的选择度量,以考虑图像中的空间关系,或用于结合多个核以进一步改善嵌入结果。然后在各种合成和幻影数据集上进行实验,以数值评估方法。此外,该工作流程应用于包括脑流形和多光谱图像的真实数据,以证明在分析高维医学图像时核选择的重要性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验