Suppr超能文献

拟南芥中,源自核表面的微管起始控制着皮层微管的生长极性和方向。

Microtubule initiation from the nuclear surface controls cortical microtubule growth polarity and orientation in Arabidopsis thaliana.

作者信息

Ambrose Chris, Wasteneys Geoffrey O

机构信息

Department of Botany, The University of British Columbia, Vancouver V6T 1Z4, Canada.

Department of Botany, The University of British Columbia, Vancouver V6T 1Z4, Canada

出版信息

Plant Cell Physiol. 2014 Sep;55(9):1636-45. doi: 10.1093/pcp/pcu094. Epub 2014 Jul 8.

Abstract

The nuclear envelope in plant cells has long been known to be a microtubule organizing center (MTOC), but its influence on microtubule organization in the cell cortex has been unclear. Here we show that nuclear MTOC activity favors the formation of longitudinal cortical microtubule (CMT) arrays. We used green fluorescent protein (GFP)-tagged gamma tubulin-complex protein 2 (GCP2) to identify nuclear MTOC activity and GFP-tagged End-Binding Protein 1b (EB1b) to track microtubule growth directions. We found that microtubules initiate from nuclei and enter the cortex in two directions along the long axis of the cell, creating bipolar longitudinal CMT arrays. Such arrays were observed in all cell types showing nuclear MTOC activity, including root hairs, recently divided cells in root tips, and the leaf epidermis. In order to confirm the causal nature of nuclei in bipolar array formation, we displaced nuclei by centrifugation, which generated a corresponding shift in the bipolarity split point. We also found that bipolar CMT arrays were associated with bidirectional trafficking of vesicular components to cell ends. Together, these findings reveal a conserved function of plant nuclear MTOCs and centrosomes/spindle pole bodies in animals and fungi, wherein all structures serve to establish polarities in microtubule growth.

摘要

长期以来,人们一直认为植物细胞中的核膜是一个微管组织中心(MTOC),但其对细胞皮层中微管组织的影响尚不清楚。在这里,我们表明核MTOC活性有利于纵向皮层微管(CMT)阵列的形成。我们使用绿色荧光蛋白(GFP)标记的γ微管蛋白复合体蛋白2(GCP2)来识别核MTOC活性,并使用GFP标记的末端结合蛋白1b(EB1b)来追踪微管的生长方向。我们发现微管从细胞核起始,并沿着细胞的长轴在两个方向上进入皮层,形成双极纵向CMT阵列。在所有显示核MTOC活性的细胞类型中都观察到了这种阵列,包括根毛、根尖最近分裂的细胞以及叶片表皮。为了证实细胞核在双极阵列形成中的因果关系,我们通过离心使细胞核移位,这导致双极性分裂点发生相应的移动。我们还发现双极CMT阵列与囊泡成分向细胞末端的双向运输有关。总之,这些发现揭示了植物核MTOC与动物和真菌中的中心体/纺锤极体的保守功能,其中所有结构都有助于在微管生长中建立极性。

相似文献

2
Protein complexes at the microtubule organizing center regulate bipolar spindle assembly.
Cell Cycle. 2008 May 1;7(9):1246-53. doi: 10.4161/cc.7.9.5808. Epub 2008 Feb 22.
3
GCP-WD mediates γ-TuRC recruitment and the geometry of microtubule nucleation in interphase arrays of Arabidopsis.
Curr Biol. 2014 Nov 3;24(21):2548-55. doi: 10.1016/j.cub.2014.09.013. Epub 2014 Oct 16.
5
Helical microtubule arrays in a collection of twisting tubulin mutants of Arabidopsis thaliana.
Proc Natl Acad Sci U S A. 2007 May 15;104(20):8544-9. doi: 10.1073/pnas.0701224104. Epub 2007 May 8.
9
Overexpressed TPX2 causes ectopic formation of microtubular arrays in the nuclei of acentrosomal plant cells.
J Exp Bot. 2013 Nov;64(14):4575-87. doi: 10.1093/jxb/ert271. Epub 2013 Sep 4.

引用本文的文献

1
A transient radial cortical microtubule array primes cell division in .
Proc Natl Acad Sci U S A. 2024 Jul 16;121(29):e2320470121. doi: 10.1073/pnas.2320470121. Epub 2024 Jul 11.
2
Kinesin-4 optimizes microtubule orientations for responsive tip growth guidance in moss.
J Cell Biol. 2023 Sep 4;222(9). doi: 10.1083/jcb.202202018. Epub 2023 Jun 30.
3
Cell biology of primary cell wall synthesis in plants.
Plant Cell. 2022 Jan 20;34(1):103-128. doi: 10.1093/plcell/koab249.
4
GR24, A Synthetic Strigolactone Analog, and Light Affect the Organization of Cortical Microtubules in Arabidopsis Hypocotyl Cells.
Front Plant Sci. 2021 Jul 7;12:675981. doi: 10.3389/fpls.2021.675981. eCollection 2021.
6
Elongation and shape changes in organisms with cell walls: A dialogue between experiments and models.
Cell Surf. 2018 Apr 13;1:34-42. doi: 10.1016/j.tcsw.2018.04.001. eCollection 2018 Mar.
9
10
Interplay between Ions, the Cytoskeleton, and Cell Wall Properties during Tip Growth.
Plant Physiol. 2018 Jan;176(1):28-40. doi: 10.1104/pp.17.01466. Epub 2017 Nov 14.

本文引用的文献

3
Effects of centrifugation on preprophase-band formation in Adiantum protonemata.
Planta. 1991 Feb;183(3):391-8. doi: 10.1007/BF00197738.
4
Cytoskeleton-dependent endomembrane organization in plant cells: an emerging role for microtubules.
Plant J. 2013 Jul;75(2):339-49. doi: 10.1111/tpj.12227. Epub 2013 Jun 12.
5
CLASP interacts with sorting nexin 1 to link microtubules and auxin transport via PIN2 recycling in Arabidopsis thaliana.
Dev Cell. 2013 Mar 25;24(6):649-59. doi: 10.1016/j.devcel.2013.02.007. Epub 2013 Mar 7.
6
Role of nucleation in cortical microtubule array organization: variations on a theme.
Plant J. 2013 Jul;75(2):270-7. doi: 10.1111/tpj.12166. Epub 2013 Apr 1.
7
Progressive transverse microtubule array organization in hormone-induced Arabidopsis hypocotyl cells.
Plant Cell. 2013 Feb;25(2):662-76. doi: 10.1105/tpc.112.107326. Epub 2013 Feb 26.
8
The influence of light on microtubule dynamics and alignment in the Arabidopsis hypocotyl.
Plant Cell. 2012 Jan;24(1):192-201. doi: 10.1105/tpc.111.093849. Epub 2012 Jan 31.
9
Computer simulation and mathematical models of the noncentrosomal plant cortical microtubule cytoskeleton.
Cytoskeleton (Hoboken). 2012 Mar;69(3):144-54. doi: 10.1002/cm.21009. Epub 2012 Feb 14.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验