School of Physiology and Pharmacology, University of Bristol Bristol, UK.
Front Neurosci. 2014 Jun 25;8:178. doi: 10.3389/fnins.2014.00178. eCollection 2014.
Calcium (Ca(2+)) and Calmodulin (CaM)-dependent serine/threonine kinase II (CaMKII) plays a central role in synaptic plasticity and memory due to its ability to phosphorylate itself and regulate its own kinase activity. Autophosphorylation at threonine 287 (T287) switches CaMKII to a Ca(2+) independent and constitutively active state replicated by overexpression of a phosphomimetic CaMKII-T287D transgene or blocked by expression of a T287A transgene. A second pair of sites, T306 T307 in the CaM binding region once autophosphorylated, prevents CaM binding and inactivates the kinase during synaptic plasticity and memory, and can be blocked by a TT306/7AA transgene. Recently the synaptic scaffolding molecule called CASK (Ca(2+)/CaM-associated serine kinase) has been shown to control both sets of CaMKII autophosphorylation events during neuronal growth, Ca(2+) signaling and memory in Drosophila. Deletion of either full length CASK or just its CaMK-like and L27 domains removed middle-term memory (MTM) and long-term memory (LTM), with CASK function in the α'/ß' mushroom body neurons being required for memory. In a similar manner directly changing the levels of CaMKII autophosphorylation (T287D, T287A, or TT306/7AA) in the α'/ß' neurons also removed MTM and LTM. In the CASK null mutant expression of either the Drosophila or human CASK transgene in the α'/ß' neurons was found to completely rescue memory, confirming that CASK signaling in α'/β' neurons is necessary and sufficient for Drosophila memory formation and that the neuronal function of CASK is conserved between Drosophila and human. Expression of human CASK in Drosophila also rescued the effect of CASK deletion on the activity state of CaMKII, suggesting that human CASK may also regulate CaMKII autophosphorylation. Mutations in human CASK have recently been shown to result in intellectual disability and neurological defects suggesting a role in plasticity and learning possibly via regulation of CaMKII autophosphorylation.
钙(Ca(2+))和钙调蛋白(CaM)依赖性丝氨酸/苏氨酸激酶 II(CaMKII)因其能够磷酸化自身并调节自身激酶活性,在突触可塑性和记忆中发挥核心作用。在 threonine 287(T287)处的自身磷酸化将 CaMKII 转换为 Ca(2+)非依赖性和组成型激活状态,通过过表达磷酸模拟的 CaMKII-T287D 转基因或通过表达 T287A 转基因来复制。第二对位点,在 CaM 结合区域的 T306 和 T307 一旦自身磷酸化,就会阻止 CaM 结合并在突触可塑性和记忆期间使激酶失活,并且可以通过 TT306/7AA 转基因来阻断。最近,称为 CASK(Ca(2+)/CaM 相关丝氨酸激酶)的突触支架分子已被证明在果蝇的神经元生长、Ca(2+)信号和记忆过程中控制两组 CaMKII 自身磷酸化事件。全长 CASK 或仅其 CaMK 样和 L27 结构域的缺失均消除了中期记忆(MTM)和长期记忆(LTM),并且 CASK 在α'/ß'蘑菇体神经元中的功能对于记忆是必需的。以类似的方式,直接改变α'/ß'神经元中 CaMKII 自身磷酸化的水平(T287D、T287A 或 TT306/7AA)也消除了 MTM 和 LTM。在 CASK 缺失突变体中,在α'/ß'神经元中表达果蝇或人类 CASK 转基因完全挽救了记忆,这证实了 CASK 信号在α'/β'神经元中对于果蝇记忆形成是必要且充分的,并且 CASK 的神经元功能在果蝇和人类之间是保守的。在果蝇中表达人类 CASK 也挽救了 CASK 缺失对 CaMKII 活性状态的影响,这表明人类 CASK 可能也调节 CaMKII 自身磷酸化。最近发现人类 CASK 的突变导致智力残疾和神经缺陷,这表明其在可塑性和学习中可能通过调节 CaMKII 自身磷酸化起作用。