School of Physiology and Pharmacology, University of Bristol Bristol, UK.
Front Mol Neurosci. 2013 Sep 11;6:27. doi: 10.3389/fnmol.2013.00027. eCollection 2013.
Calcium (Ca(2+))/calmodulin (CaM)-dependent kinase II (CaMKII) activity plays a fundamental role in learning and memory. A key feature of CaMKII in memory formation is its ability to be regulated by autophosphorylation, which switches its activity on and off during synaptic plasticity. The synaptic scaffolding protein CASK (calcium (Ca(2+))/calmodulin (CaM) associated serine kinase) is also important for learning and memory, as mutations in CASK result in intellectual disability and neurological defects in humans. We show that in Drosophila larvae, CASK interacts with CaMKII to control neuronal growth and calcium signaling. Furthermore, deletion of the CaMK-like and L27 domains of CASK (CASK β null) or expression of overactive CaMKII (T287D) produced similar effects on synaptic growth and Ca(2+) signaling. CASK overexpression rescues the effects of CaMKII overactivity, consistent with the notion that CASK and CaMKII act in a common pathway that controls these neuronal processes. The reduction in Ca(2+) signaling observed in the CASK β null mutant caused a decrease in vesicle trafficking at synapses. In addition, the decrease in Ca(2+) signaling in CASK mutants was associated with an increase in Ether-à-go-go (EAG) potassium (K(+)) channel localization to synapses. Reducing EAG restored the decrease in Ca(2+) signaling observed in CASK mutants to the level of wildtype, suggesting that CASK regulates Ca(2+) signaling via EAG. CASK knockdown reduced both appetitive associative learning and odor evoked Ca(2+) responses in Drosophila mushroom bodies, which are the learning centers of Drosophila. Expression of human CASK in Drosophila rescued the effect of CASK deletion on the activity state of CaMKII, suggesting that human CASK may also regulate CaMKII autophosphorylation.
钙(Ca(2+))/钙调蛋白(CaM)依赖性激酶 II(CaMKII)活性在学习和记忆中起着至关重要的作用。CaMKII 在记忆形成中的一个关键特征是其能够通过自身磷酸化进行调节,这种磷酸化在突触可塑性过程中开启和关闭其活性。突触支架蛋白 CASK(钙(Ca(2+))/钙调蛋白(CaM)相关丝氨酸激酶)对于学习和记忆也很重要,因为 CASK 的突变会导致人类智力残疾和神经缺陷。我们发现,在果蝇幼虫中,CASK 与 CaMKII 相互作用,以控制神经元生长和钙信号。此外,CASK 的 CaMK 样和 L27 结构域缺失(CASKβ 缺失)或过表达活性 CaMKII(T287D)对突触生长和 Ca(2+)信号产生类似的影响。CASK 的过表达挽救了 CaMKII 过活性的影响,这与 CASK 和 CaMKII 作用于控制这些神经元过程的共同途径的观点一致。在 CASKβ 缺失突变体中观察到的 Ca(2+)信号的减少导致突触囊泡运输减少。此外,CASK 突变体中 Ca(2+)信号的减少与 Ether-à-go-go(EAG)钾(K(+))通道向突触的定位增加有关。减少 EAG 恢复了 CASK 突变体中观察到的 Ca(2+)信号的减少,使其达到野生型水平,这表明 CASK 通过 EAG 调节 Ca(2+)信号。CASK 敲低降低了果蝇蘑菇体中的食欲联想学习和气味诱发的 Ca(2+)反应,而果蝇蘑菇体是果蝇的学习中心。在果蝇中表达人类 CASK 挽救了 CASK 删除对 CaMKII 活性状态的影响,这表明人类 CASK 也可能调节 CaMKII 的自身磷酸化。