Institut de Química Computacional i Catàlisi (IQCC) and Departament de Química, Universitat de Girona, Campus de Montilivi, 17071 Girona, Spain.
Phys Chem Chem Phys. 2014 Aug 28;16(32):17154-62. doi: 10.1039/c4cp02117g. Epub 2014 Jul 10.
We have tested the performance of the Kohn-Sham orbital approach to obtain the electronic coupling and the energetics for hole transfer (HT) in the guanine-indole pair, using a three-state model. The parameters are derived from the simple DFT calculations with 10 different functionals, and compared with benchmark MS-CASPT2 calculations. The guanine-indole pair is a simple model for HT in DNA-protein complexes, which has been postulated as a protection mechanism for DNA against oxidative damage. In this pair, the first excited state of the indole radical cation has low energy (less than 0.3 eV relative to the ground state of the cation), which requires the application of very accurate quantum chemical methods and the invocation of a 3-state model. The Kohn-Sham orbital approach has been tested on six π stacked and three T-shaped conformers. It has been shown to provide quite accurate results for all ten tested functionals, compared to the reference MS-CASPT2 values. The best performance has been found for the long-range corrected CAM-B3LYP functional. Our results suggest that the Kohn-Sham orbital method can be used to estimate the excited state properties of radical cation systems studied using transient spectroscopy. Because of its accuracy and its low computational cost, the approach allows one to calculate relatively large models and to account for the effects of conformational dynamics on HT between DNA and a protein environment.
我们使用三态模型测试了 Kohn-Sham 轨道方法在获得嘌呤-吲哚对中空穴转移 (HT) 的电子耦合和能量方面的性能。参数是通过 10 种不同泛函的简单 DFT 计算得出的,并与基准 MS-CASPT2 计算进行了比较。嘌呤-吲哚对是 DNA-蛋白质复合物中 HT 的简单模型,被假定为 DNA 抵抗氧化损伤的保护机制。在该对中,吲哚自由基阳离子的第一激发态能量较低(相对于阳离子的基态低不到 0.3 eV),这需要应用非常精确的量子化学方法并调用三态模型。Kohn-Sham 轨道方法已经在六个π堆积和三个 T 形构象上进行了测试。与参考 MS-CASPT2 值相比,它已被证明对所有十种测试泛函都能提供相当准确的结果。对于长程校正 CAM-B3LYP 泛函,性能最佳。我们的结果表明,Kohn-Sham 轨道方法可用于估计使用瞬态光谱研究的自由基阳离子体系的激发态性质。由于其准确性和低计算成本,该方法允许计算相对较大的模型,并考虑构象动力学对 DNA 和蛋白质环境之间 HT 的影响。