Institute for Environmental Sciences, University of Koblenz-Landau, Landau, Germany.
Institute for Environmental Sciences, University of Koblenz-Landau, Landau, Germany.
Sci Total Environ. 2014 Sep 15;493:891-7. doi: 10.1016/j.scitotenv.2014.06.092. Epub 2014 Jul 7.
Nanoparticle toxicity depends amongst others on particle characteristics and nanoparticle behavior during their aquatic life cycle. Aquatic organisms may be exposed to nanoparticle agglomerates of varying size, while lager agglomerates after settling rather affect benthic organisms. In this context, the present study systematically examined the role of particle characteristics, i.e. crystalline structure composition (anatase as well as mixture of anatase-rutile), initial particle size (55-, 100-, and 140-nm) and surface area, in the toxicity of titanium dioxide nanoparticles (nTiO2) to the pelagic filter feeder Daphnia magna (n = 4) and the benthic amphipod Gammarus fossarum (n = 30). Smaller initial particle sizes (i.e. 55-nm) and anatase based particles showed an approximately 90% lower Daphnia EC50-value compared to its respective counterpart. Most importantly, particle surface normalized EC50-values significantly differed for nanoparticles equal to or below 100 nm in size from 140-nm sized particles. Hence, these data suggest that the reactive initial surface area may explain the ecotoxicological potential of different particle size classes only if their size is smaller or around 100 nm. In contrast to Daphnia, Gammarus was not affected by nTiO2 concentrations of up to 5.00 mg/L, irrespective of their characteristics. This indicates fundamental differences in the toxicity of nTiO2 during its aquatic life cycle mediated by alterations in their characteristics over time.
纳米颗粒的毒性取决于颗粒特性以及纳米颗粒在其水生生命周期中的行为。水生生物可能会暴露于不同大小的纳米颗粒团聚体中,而较大的团聚体在沉降后会对底栖生物产生影响。在这种情况下,本研究系统地研究了颗粒特性(如锐钛矿和锐钛矿-金红石混合物的晶体结构组成、初始粒径(55nm、100nm 和 140nm)和表面积)在二氧化钛纳米颗粒(nTiO2)对浮游滤食性水蚤(Daphnia magna)(n = 4)和底栖片脚类动物(Gammarus fossarum)(n = 30)的毒性中的作用。与相应的对照相比,较小的初始粒径(即 55nm)和锐钛矿基颗粒的水蚤 EC50 值约低 90%。最重要的是,对于粒径等于或小于 100nm 的纳米颗粒,粒径归一化 EC50 值与粒径为 140nm 的颗粒显著不同。因此,这些数据表明,如果颗粒的尺寸小于或约为 100nm,那么反应初始表面积可能仅能解释不同粒径颗粒类别的生态毒理学潜力。与水蚤不同的是,无论其特性如何,Gammarus 都不会受到高达 5.00mg/L 的 nTiO2 浓度的影响。这表明在纳米颗粒的水生生命周期中,由于其特性随时间发生变化,其毒性存在根本差异。