Suppr超能文献

基于生物阻抗测量的乳腺良性和癌性组织的自动化微机电系统表征研究

Towards an Automated MEMS-based Characterization of Benign and Cancerous Breast Tissue using Bioimpedance Measurements.

作者信息

Pandya Hardik J, Kim Hyun Tae, Roy Rajarshi, Chen Wenjin, Cong Lei, Zhong Hua, Foran David J, Desai Jaydev P

机构信息

Department of Mechanical Engineering, Maryland Robotics Center, Institute for Systems Research, University of Maryland, College Park, Maryland 20742, USA.

Center for Biomedical Imaging and Informatics, Rutgers Cancer Institute of New Jersey, Rutgers, The State University of New Jersey, New Brunswick, NJ-08901, USA.

出版信息

Sens Actuators B Chem. 2014 Aug 1;199:259-268. doi: 10.1016/j.snb.2014.03.065.

Abstract

Micro-Electro-Mechanical-Systems (MEMS) are desirable for use within medical diagnostics because of their capacity to manipulate and analyze biological materials at the microscale. Biosensors can be incorporated into portable lab-on-a-chip devices to quickly and reliably perform diagnostics procedure on laboratory and clinical samples. In this paper, electrical impedance-based measurements were used to distinguish between benign and cancerous breast tissues using microchips in a real-time and label-free manner. Two different microchips having inter-digited electrodes (10 µm width with 10 µm spacing and 10 µm width with 30 µm spacing) were used for measuring the impedance of breast tissues. The system employs Agilent E4980A precision impedance analyzer. The impedance magnitude and phase were collected over a frequency range of 100 Hz to 2 MHz. The benign group and cancer group showed clearly distinguishable impedance properties. At 200 kHz, the difference in impedance of benign and cancerous breast tissue was significantly higher (3110 Ω) in the case of microchips having 10 µm spacing compared to microchip having 30 µm spacing (568 Ω).

摘要

微机电系统(MEMS)因其能够在微观尺度上处理和分析生物材料而适用于医学诊断。生物传感器可以集成到便携式芯片实验室设备中,以便对实验室和临床样本快速可靠地执行诊断程序。在本文中,基于电阻抗的测量方法被用于以实时且无标记的方式,利用微芯片区分良性和癌性乳腺组织。使用了两种不同的具有叉指电极(宽度为10 µm,间距为10 µm;宽度为10 µm,间距为30 µm)的微芯片来测量乳腺组织的阻抗。该系统采用安捷伦E4980A精密阻抗分析仪。在100 Hz至2 MHz的频率范围内采集阻抗幅值和相位。良性组和癌症组表现出明显可区分的阻抗特性。在200 kHz时,与间距为30 µm的微芯片(568 Ω)相比,间距为10 µm的微芯片在良性和癌性乳腺组织的阻抗差异显著更高(3110 Ω)。

相似文献

2
Bioimpedance Assessment of Oral Squamous Cell Carcinoma with Clinicopathological Correlation.
J Contemp Dent Pract. 2015 Sep 1;16(9):715-22. doi: 10.5005/jp-journals-10024-1746.
3
Design and fabrication of a flexible MEMS-based electromechanical sensor array for breast cancer diagnosis.
J Micromech Microeng. 2015 Jun 23;25(7). doi: 10.1088/0960-1317/25/7/075025.
6
Accurate characterization of benign and cancerous breast tissues: aspecific patient studies using piezoresistive microcantilevers.
Biosens Bioelectron. 2015 Jan 15;63:414-424. doi: 10.1016/j.bios.2014.08.002. Epub 2014 Aug 7.
7
A comparison study of electrodes for neonate electrical impedance tomography.
Physiol Meas. 2009 Jun;30(6):S73-84. doi: 10.1088/0967-3334/30/6/S05. Epub 2009 Jun 2.
8
Overcoming the Impedance Range Limitations of Portable Bioelectrical Impedance Spectroscopy Clinical Devices.
Annu Int Conf IEEE Eng Med Biol Soc. 2023 Jul;2023:1-4. doi: 10.1109/EMBC40787.2023.10340265.
9
Simultaneous MEMS-based electro-mechanical phenotyping of breast cancer.
Lab Chip. 2015;15(18):3695-706. doi: 10.1039/c5lc00491h.
10
MEMS impedance flow cytometry designs for effective manipulation of micro entities in health care applications.
Biosens Bioelectron. 2019 Oct 1;142:111526. doi: 10.1016/j.bios.2019.111526. Epub 2019 Jul 23.

引用本文的文献

本文引用的文献

1
Interdigitated microelectrode-based microchip for electrical impedance spectroscopic study of oral cancer cells.
Biomed Microdevices. 2011 Dec;13(6):1075-88. doi: 10.1007/s10544-011-9577-8.
2
Real-time impedance analysis of host cell response to meningococcal infection.
J Microbiol Methods. 2011 Jan;84(1):101-8. doi: 10.1016/j.mimet.2010.11.004. Epub 2010 Nov 13.
3
Electrical cell-substrate impedance sensing as a non-invasive tool for cancer cell study.
Analyst. 2011 Jan 21;136(2):237-45. doi: 10.1039/c0an00560f. Epub 2010 Oct 20.
4
Higher throughput calorimetry: opportunities, approaches and challenges.
Curr Opin Struct Biol. 2010 Oct;20(5):598-605. doi: 10.1016/j.sbi.2010.09.001. Epub 2010 Oct 1.
5
Monitoring impedance changes associated with motility and mitosis of a single cell.
Lab Chip. 2010 Oct 7;10(19):2546-50. doi: 10.1039/c004115g. Epub 2010 Aug 2.
6
Dynamic measurement of the surface stress induced by the attachment and growth of cells on Au electrode with a quartz crystal microbalance.
Biosens Bioelectron. 2009 Feb 15;24(6):1603-9. doi: 10.1016/j.bios.2008.08.021. Epub 2008 Aug 22.
7
Electrical impedance spectroscopy of benign and malignant prostatic tissues.
J Urol. 2008 Apr;179(4):1580-6. doi: 10.1016/j.juro.2007.11.043. Epub 2008 Mar 4.
8
Microcavity array (MCA)-based biosensor chip for functional drug screening of 3D tissue models.
Biosens Bioelectron. 2008 May 15;23(10):1473-80. doi: 10.1016/j.bios.2008.01.003. Epub 2008 Jan 12.
9
Influence of cell adhesion and spreading on impedance characteristics of cell-based sensors.
Biosens Bioelectron. 2008 Mar 14;23(8):1307-13. doi: 10.1016/j.bios.2007.11.021. Epub 2007 Dec 8.
10
Development of a rare cell fractionation device: application for cancer detection.
IEEE Trans Nanobioscience. 2004 Dec;3(4):251-6. doi: 10.1109/tnb.2004.837903.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验