Suppr超能文献

增强乳腺癌检测:一种使用多电极生物阻抗的机器学习方法。

Enhancing Breast Cancer Detection: A Machine Learning Approach Using Multielectrode Bioimpedance.

作者信息

Bougandoura Omar, Achour Yahia, Zaoui Abdelhalim

机构信息

UER-ELT, Ecole Militaire Polytechnique, Algiers, Algeria.

Department of Electrical Engineering and Industrial Computing, Ecole Nationale Supérieure des Technologies Avancées, Algiers, Algeria.

出版信息

Bioelectricity. 2024 Dec 13;6(4):251-262. doi: 10.1089/bioe.2024.0004. eCollection 2024 Dec.

Abstract

BACKGROUND

Early detection of cancerous tumors is a critical factor in improving treatment outcomes. To address this need, this study explores a simple, effective, and cost-efficient method for early cancer detection by measuring the bioimpedance of living tissues. Bioimpedance-based methods hold significant promise for the early detection of cancerous tumors.

MATERIALS AND METHODS

The study begins by simulating the impedance behavior of the human breast under two conditions: healthy and containing cancerous tumors. The Cole-Cole model is used to simulate the dielectric properties of both breast and tumor tissues using finite element modeling. In the measurement phase, eight electrodes are evenly distributed around the breast model to ensure comprehensive data collection. Subsequently, a dataset is prepared encompassing three breast sizes (60, 70, and 80 mm) in both the healthy and tumor-afflicted states, with tumor sizes of 5, 8, and 10 mm radius. This dataset is utilized to develop machine learning models, including support vector machines (SVM), convolutional neural networks (CNN), and random forest (RF), for breast cancer detection.

RESULTS

The results of this study demonstrate the practicality of integrating machine learning techniques with multielectrode bioimpedance measurements to achieve precise and automated breast cancer detection. Notably, the RF model outperformed both SVM and CNN in terms of cancer detection accuracy.

CONCLUSIONS

This study underscores the potential of bioimpedance-based methods, coupled with machine learning algorithms, for early cancer detection. The findings suggest that RF models hold promise for accurate and automated breast cancer detection, offering a valuable tool for improving patient outcomes.

摘要

背景

癌症肿瘤的早期检测是改善治疗效果的关键因素。为满足这一需求,本研究探索了一种通过测量活体组织生物阻抗来进行早期癌症检测的简单、有效且经济高效的方法。基于生物阻抗的方法在癌症肿瘤早期检测方面具有巨大潜力。

材料与方法

该研究首先模拟了健康和患有癌症肿瘤这两种情况下人体乳房的阻抗行为。使用Cole-Cole模型通过有限元建模来模拟乳房和肿瘤组织的介电特性。在测量阶段,八个电极均匀分布在乳房模型周围以确保全面的数据收集。随后,准备了一个数据集,涵盖健康状态和患肿瘤状态下的三种乳房尺寸(60、70和80毫米),肿瘤半径分别为5、8和10毫米。该数据集用于开发机器学习模型,包括支持向量机(SVM)、卷积神经网络(CNN)和随机森林(RF),用于乳腺癌检测。

结果

本研究结果证明了将机器学习技术与多电极生物阻抗测量相结合以实现精确和自动化乳腺癌检测的实用性。值得注意的是,在癌症检测准确性方面,RF模型优于SVM和CNN。

结论

本研究强调了基于生物阻抗的方法与机器学习算法相结合在早期癌症检测方面的潜力。研究结果表明,RF模型在准确和自动化乳腺癌检测方面具有前景,为改善患者治疗效果提供了一种有价值的工具。

相似文献

1
Enhancing Breast Cancer Detection: A Machine Learning Approach Using Multielectrode Bioimpedance.
Bioelectricity. 2024 Dec 13;6(4):251-262. doi: 10.1089/bioe.2024.0004. eCollection 2024 Dec.
4
Stabilizing machine learning for reproducible and explainable results: A novel validation approach to subject-specific insights.
Comput Methods Programs Biomed. 2025 Jun 21;269:108899. doi: 10.1016/j.cmpb.2025.108899.
5
Cost-effectiveness of using prognostic information to select women with breast cancer for adjuvant systemic therapy.
Health Technol Assess. 2006 Sep;10(34):iii-iv, ix-xi, 1-204. doi: 10.3310/hta10340.
8
Characterizing Breast Tumor Heterogeneity Through IVIM-DWI Parameters and Signal Decay Analysis.
Diagnostics (Basel). 2025 Jun 12;15(12):1499. doi: 10.3390/diagnostics15121499.

本文引用的文献

1
Molecular Breast Imaging: A Scientific Review.
J Breast Imaging. 2021 Aug 12;3(4):416-426. doi: 10.1093/jbi/wbab039.
2
Boosting Breast Cancer Detection Using Convolutional Neural Network.
J Healthc Eng. 2021 Apr 3;2021:5528622. doi: 10.1155/2021/5528622. eCollection 2021.
3
Bioimpedance Spectroscopy: Basics and Applications.
ACS Biomater Sci Eng. 2021 Jun 14;7(6):1962-1986. doi: 10.1021/acsbiomaterials.0c01570. Epub 2021 Mar 22.
4
Applications of Bioimpedance Measurement Techniques in Tissue Engineering.
J Electr Bioimpedance. 2018 Dec 31;9(1):142-158. doi: 10.2478/joeb-2018-0019. eCollection 2018 Jan.
5
Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries.
CA Cancer J Clin. 2021 May;71(3):209-249. doi: 10.3322/caac.21660. Epub 2021 Feb 4.
7
Breast Cancer Detection Using Low-Frequency Bioimpedance Device.
Breast Cancer (Dove Med Press). 2020 Sep 18;12:109-116. doi: 10.2147/BCTT.S274421. eCollection 2020.
9
Bioimpedance Spectroscopy for Assessment of Breast Cancer-Related Lymphedema: A Systematic Review.
Plast Surg Nurs. 2020 Apr/Jun;40(2):86-90. doi: 10.1097/PSN.0000000000000306.
10
A Review of Noninvasive Techniques for Skin Cancer Detection in Dermatology.
Am J Clin Dermatol. 2020 Aug;21(4):513-524. doi: 10.1007/s40257-020-00517-z.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验