Bougandoura Omar, Achour Yahia, Zaoui Abdelhalim
UER-ELT, Ecole Militaire Polytechnique, Algiers, Algeria.
Department of Electrical Engineering and Industrial Computing, Ecole Nationale Supérieure des Technologies Avancées, Algiers, Algeria.
Bioelectricity. 2024 Dec 13;6(4):251-262. doi: 10.1089/bioe.2024.0004. eCollection 2024 Dec.
Early detection of cancerous tumors is a critical factor in improving treatment outcomes. To address this need, this study explores a simple, effective, and cost-efficient method for early cancer detection by measuring the bioimpedance of living tissues. Bioimpedance-based methods hold significant promise for the early detection of cancerous tumors.
The study begins by simulating the impedance behavior of the human breast under two conditions: healthy and containing cancerous tumors. The Cole-Cole model is used to simulate the dielectric properties of both breast and tumor tissues using finite element modeling. In the measurement phase, eight electrodes are evenly distributed around the breast model to ensure comprehensive data collection. Subsequently, a dataset is prepared encompassing three breast sizes (60, 70, and 80 mm) in both the healthy and tumor-afflicted states, with tumor sizes of 5, 8, and 10 mm radius. This dataset is utilized to develop machine learning models, including support vector machines (SVM), convolutional neural networks (CNN), and random forest (RF), for breast cancer detection.
The results of this study demonstrate the practicality of integrating machine learning techniques with multielectrode bioimpedance measurements to achieve precise and automated breast cancer detection. Notably, the RF model outperformed both SVM and CNN in terms of cancer detection accuracy.
This study underscores the potential of bioimpedance-based methods, coupled with machine learning algorithms, for early cancer detection. The findings suggest that RF models hold promise for accurate and automated breast cancer detection, offering a valuable tool for improving patient outcomes.
癌症肿瘤的早期检测是改善治疗效果的关键因素。为满足这一需求,本研究探索了一种通过测量活体组织生物阻抗来进行早期癌症检测的简单、有效且经济高效的方法。基于生物阻抗的方法在癌症肿瘤早期检测方面具有巨大潜力。
该研究首先模拟了健康和患有癌症肿瘤这两种情况下人体乳房的阻抗行为。使用Cole-Cole模型通过有限元建模来模拟乳房和肿瘤组织的介电特性。在测量阶段,八个电极均匀分布在乳房模型周围以确保全面的数据收集。随后,准备了一个数据集,涵盖健康状态和患肿瘤状态下的三种乳房尺寸(60、70和80毫米),肿瘤半径分别为5、8和10毫米。该数据集用于开发机器学习模型,包括支持向量机(SVM)、卷积神经网络(CNN)和随机森林(RF),用于乳腺癌检测。
本研究结果证明了将机器学习技术与多电极生物阻抗测量相结合以实现精确和自动化乳腺癌检测的实用性。值得注意的是,在癌症检测准确性方面,RF模型优于SVM和CNN。
本研究强调了基于生物阻抗的方法与机器学习算法相结合在早期癌症检测方面的潜力。研究结果表明,RF模型在准确和自动化乳腺癌检测方面具有前景,为改善患者治疗效果提供了一种有价值的工具。