Suppr超能文献

全面研究肿瘤单核苷酸多态性阵列数据揭示了人类肝细胞癌中的显著驱动异常和信号通路紊乱。

Comprehensive study of tumour single nucleotide polymorphism array data reveals significant driver aberrations and disrupted signalling pathways in human hepatocellular cancer.

机构信息

School of Information Science and Technology, University of Science and Technology of China, Hefei AH230027, People's Republic of China.

Centers for Biomedical Engineering, University of Science and Technology of China, Hefei AH230027, People's Republic of China.

出版信息

IET Syst Biol. 2014 Apr;8(2):24-32. doi: 10.1049/iet-syb.2013.0027.

Abstract

The authors describe an integrated method for analysing cancer driver aberrations and disrupted pathways by using tumour single nucleotide polymorphism (SNP) arrays. The authors new method adopts a novel statistical model to explicitly quantify the SNP signals, and therefore infers the genomic aberrations, including copy number alteration and loss of heterozygosity. Examination on the dilution series dataset shows that this method can correctly identify the genomic aberrations even with the existence of severe normal cell contamination in tumour sample. Furthermore, with the results of the aberration identification obtained from multiple tumour samples, a permutation-based approach is proposed for identifying the statistically significant driver aberrations, which are further incorporated with the known signalling pathways for pathway enrichment analysis. By applying the approach to 286 hepatocellular tumour samples, they successfully uncover numerous driver aberration regions across the cancer genome, for example, chromosomes 4p and 5q, which harbour many known hepatocellular cancer related genes such as alpha-fetoprotein (AFP) and ectodermal-neural cortex (ENC1). In addition, they identify nine disrupted pathways that are highly enriched by the driver aberrations, including the systemic lupus erythematosus pathway, the vascular endothelial growth factor (VEGF) signalling pathway and so on. These results support the feasibility and the utility of the proposed method on the characterisation of the cancer genome and the downstream analysis of the driver aberrations and the disrupted signalling pathways.

摘要

作者描述了一种通过肿瘤单核苷酸多态性 (SNP) 阵列分析癌症驱动因子异常和信号通路失调的综合方法。该方法采用一种新的统计模型来明确量化 SNP 信号,从而推断基因组异常,包括拷贝数改变和杂合性丢失。对稀释系列数据集的检验表明,即使在肿瘤样本中存在严重的正常细胞污染,该方法也可以正确识别基因组异常。此外,通过对多个肿瘤样本的异常识别结果,提出了一种基于排列的方法来识别统计学上显著的驱动异常,这些异常进一步与已知的信号通路结合进行通路富集分析。作者将该方法应用于 286 个肝细胞肿瘤样本,成功地揭示了癌症基因组中许多驱动异常区域,例如染色体 4p 和 5q,其中包含许多已知的肝细胞癌相关基因,如甲胎蛋白 (AFP) 和外胚层-神经皮质 (ENC1)。此外,作者还鉴定了 9 个被驱动异常高度富集的失调通路,包括系统性红斑狼疮通路、血管内皮生长因子 (VEGF) 信号通路等。这些结果支持了所提出的方法在癌症基因组特征描述和驱动异常以及失调信号通路下游分析中的可行性和实用性。

相似文献

5
Unique genomic profile of fibrolamellar hepatocellular carcinoma.纤维板层型肝细胞癌的独特基因组图谱。
Gastroenterology. 2015 Apr;148(4):806-18.e10. doi: 10.1053/j.gastro.2014.12.028. Epub 2014 Dec 31.

本文引用的文献

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验