School of Mathematical Sciences, Peking University, Beijing 100871, People's Republic of China.
Quantitative Biology, Peking University, Beijing 100871, People's Republic of China.
IET Syst Biol. 2014 Jun;8(3):87-95. doi: 10.1049/iet-syb.2013.0029.
Discovering the regulation of cancer-related gene is of great importance in cancer biology. Transcription factors and microRNAs are two kinds of crucial regulators in gene expression, and they compose a combinatorial regulatory network with their target genes. Revealing the structure of this network could improve the authors' understanding of gene regulation, and further explore the molecular pathway in cancer. In this article, the authors propose a novel approach graphical adaptive lasso (GALASSO) to construct the regulatory network in breast cancer. GALASSO use a Gaussian graphical model with adaptive lasso penalties to integrate the sequence information as well as gene expression profiles. The simulation study and the experimental profiles verify the accuracy of the authors' approach. The authors further reveal the structure of the regulatory network, and explore the role of feedforward loops in gene regulation. In addition, the authors discuss the combinatorial regulatory effect between transcription factors and microRNAs, and select miR-155 for detailed analysis of microRNA's role in cancer. The proposed GALASSO approach is an efficient method to construct the combinatorial regulatory network. It also provides a new way to integrate different data sources and could find more applications in meta-analysis problem.
发现与癌症相关的基因调控在癌症生物学中具有重要意义。转录因子和 microRNAs 是两种重要的基因表达调控因子,它们与靶基因组成一个组合调控网络。揭示这个网络的结构可以提高人们对基因调控的理解,并进一步探索癌症中的分子途径。在本文中,作者提出了一种新的方法——图形自适应套索(GALASSO),用于构建乳腺癌中的调控网络。GALASSO 使用具有自适应套索惩罚的高斯图形模型来整合序列信息和基因表达谱。模拟研究和实验数据验证了该方法的准确性。作者进一步揭示了调控网络的结构,并探讨了前馈回路在基因调控中的作用。此外,作者讨论了转录因子和 microRNAs 之间的组合调控效应,并选择 miR-155 进行 microRNA 在癌症中作用的详细分析。所提出的 GALASSO 方法是构建组合调控网络的有效方法。它还为整合不同数据源提供了一种新方法,并可能在荟萃分析问题中找到更多的应用。