Suppr超能文献

利用差异加权图形套索法,将先验生物学知识纳入基于网络的差异基因表达分析。

Incorporating prior biological knowledge for network-based differential gene expression analysis using differentially weighted graphical LASSO.

作者信息

Zuo Yiming, Cui Yi, Yu Guoqiang, Li Ruijiang, Ressom Habtom W

机构信息

Department of Electrical and Computer Engineering, Virginia Polytechnic Institute and State University, Arlington, 22203, VA, USA.

Department of Radiation Oncology, Stanford University, Palo Alto, 94304, CA, USA.

出版信息

BMC Bioinformatics. 2017 Feb 10;18(1):99. doi: 10.1186/s12859-017-1515-1.

Abstract

BACKGROUND

Conventional differential gene expression analysis by methods such as student's t-test, SAM, and Empirical Bayes often searches for statistically significant genes without considering the interactions among them. Network-based approaches provide a natural way to study these interactions and to investigate the rewiring interactions in disease versus control groups. In this paper, we apply weighted graphical LASSO (wgLASSO) algorithm to integrate a data-driven network model with prior biological knowledge (i.e., protein-protein interactions) for biological network inference. We propose a novel differentially weighted graphical LASSO (dwgLASSO) algorithm that builds group-specific networks and perform network-based differential gene expression analysis to select biomarker candidates by considering their topological differences between the groups.

RESULTS

Through simulation, we showed that wgLASSO can achieve better performance in building biologically relevant networks than purely data-driven models (e.g., neighbor selection, graphical LASSO), even when only a moderate level of information is available as prior biological knowledge. We evaluated the performance of dwgLASSO for survival time prediction using two microarray breast cancer datasets previously reported by Bild et al. and van de Vijver et al. Compared with the top 10 significant genes selected by conventional differential gene expression analysis method, the top 10 significant genes selected by dwgLASSO in the dataset from Bild et al. led to a significantly improved survival time prediction in the independent dataset from van de Vijver et al. Among the 10 genes selected by dwgLASSO, UBE2S, SALL2, XBP1 and KIAA0922 have been confirmed by literature survey to be highly relevant in breast cancer biomarker discovery study. Additionally, we tested dwgLASSO on TCGA RNA-seq data acquired from patients with hepatocellular carcinoma (HCC) on tumors samples and their corresponding non-tumorous liver tissues. Improved sensitivity, specificity and area under curve (AUC) were observed when comparing dwgLASSO with conventional differential gene expression analysis method.

CONCLUSIONS

The proposed network-based differential gene expression analysis algorithm dwgLASSO can achieve better performance than conventional differential gene expression analysis methods by integrating information at both gene expression and network topology levels. The incorporation of prior biological knowledge can lead to the identification of biologically meaningful genes in cancer biomarker studies.

摘要

背景

通过诸如学生t检验、SAM和经验贝叶斯等方法进行的传统差异基因表达分析,通常在不考虑基因间相互作用的情况下寻找具有统计学意义的基因。基于网络的方法提供了一种自然的方式来研究这些相互作用,并调查疾病组与对照组中重新布线的相互作用。在本文中,我们应用加权图形套索(wgLASSO)算法,将数据驱动的网络模型与先验生物学知识(即蛋白质-蛋白质相互作用)相结合,用于生物网络推断。我们提出了一种新颖的差异加权图形套索(dwgLASSO)算法,该算法构建特定组的网络,并通过考虑组间拓扑差异进行基于网络的差异基因表达分析,以选择生物标志物候选基因。

结果

通过模拟,我们表明,即使只有适度水平的信息作为先验生物学知识,wgLASSO在构建生物学相关网络方面也能比纯数据驱动模型(如邻居选择、图形套索)表现出更好的性能。我们使用Bild等人和van de Vijver等人先前报道的两个微阵列乳腺癌数据集评估了dwgLASSO在生存时间预测方面的性能。与传统差异基因表达分析方法选择的前10个显著基因相比,dwgLASSO在Bild等人的数据集中选择的前10个显著基因在van de Vijver等人的独立数据集中导致了显著改善的生存时间预测。在dwgLASSO选择的10个基因中,通过文献调查证实UBE2S、SALL2、XBP1和KIAA0922在乳腺癌生物标志物发现研究中高度相关。此外,我们在从肝细胞癌(HCC)患者获取的肿瘤样本及其相应的非肿瘤肝组织的TCGA RNA测序数据上测试了dwgLASSO。与传统差异基因表达分析方法相比,观察到dwgLASSO的敏感性、特异性和曲线下面积(AUC)有所提高。

结论

所提出的基于网络的差异基因表达分析算法dwgLASSO通过整合基因表达和网络拓扑水平的信息,能够比传统差异基因表达分析方法表现出更好的性能。纳入先验生物学知识能够在癌症生物标志物研究中识别出具有生物学意义的基因。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/95ea/5303311/18b0b9eedc2f/12859_2017_1515_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验