Suppr超能文献

GrDHP:对偶启发式动态规划的通用效用函数表示。

GrDHP: a general utility function representation for dual heuristic dynamic programming.

出版信息

IEEE Trans Neural Netw Learn Syst. 2015 Mar;26(3):614-27. doi: 10.1109/TNNLS.2014.2329942. Epub 2014 Jul 8.

Abstract

A general utility function representation is proposed to provide the required derivable and adjustable utility function for the dual heuristic dynamic programming (DHP) design. Goal representation DHP (GrDHP) is presented with a goal network being on top of the traditional DHP design. This goal network provides a general mapping between the system states and the derivatives of the utility function. With this proposed architecture, we can obtain the required derivatives of the utility function directly from the goal network. In addition, instead of a fixed predefined utility function in literature, we conduct an online learning process for the goal network so that the derivatives of the utility function can be adaptively tuned over time. We provide the control performance of both the proposed GrDHP and the traditional DHP approaches under the same environment and parameter settings. The statistical simulation results and the snapshot of the system variables are presented to demonstrate the improved learning and controlling performance. We also apply both approaches to a power system example to further demonstrate the control capabilities of the GrDHP approach.

摘要

提出了一种通用效用函数表示方法,为对偶启发式动态规划(DHP)设计提供所需的可导和可调效用函数。提出了具有目标网络的目标表示 DHP(GrDHP),该目标网络位于传统 DHP 设计之上。该目标网络提供了系统状态和效用函数导数之间的一般映射。通过这种架构,我们可以直接从目标网络中获得所需的效用函数导数。此外,与文献中固定的预定义效用函数不同,我们对目标网络进行在线学习过程,以便随着时间的推移自适应调整效用函数的导数。我们在相同的环境和参数设置下提供了所提出的 GrDHP 和传统 DHP 方法的控制性能。统计模拟结果和系统变量的快照用于演示改进的学习和控制性能。我们还将这两种方法应用于电力系统示例,以进一步演示 GrDHP 方法的控制能力。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验