Suppr超能文献

非晶态材料的可变振幅振荡剪切响应。

Variable-amplitude oscillatory shear response of amorphous materials.

作者信息

Perchikov Nathan, Bouchbinder Eran

机构信息

Department of Chemical Physics, Weizmann Institute of Science, Rehovot 76100, Israel.

出版信息

Phys Rev E Stat Nonlin Soft Matter Phys. 2014 Jun;89(6):062307. doi: 10.1103/PhysRevE.89.062307. Epub 2014 Jun 16.

Abstract

Variable-amplitude oscillatory shear tests are emerging as powerful tools to investigate and quantify the nonlinear rheology of amorphous solids, complex fluids, and biological materials. Quite a few recent experimental and atomistic simulation studies demonstrated that at low shear amplitudes, an amorphous solid settles into an amplitude- and initial-conditions-dependent dissipative limit cycle, in which back-and-forth localized particle rearrangements periodically bring the system to the same state. At sufficiently large shear amplitudes, the amorphous system loses memory of the initial conditions, exhibits chaotic particle motions accompanied by diffusive behavior, and settles into a stochastic steady state. The two regimes are separated by a transition amplitude, possibly characterized by some critical-like features. Here we argue that these observations support some of the physical assumptions embodied in the nonequilibrium thermodynamic, internal-variables based, shear-transformation-zone model of amorphous viscoplasticity; most notably that "flow defects" in amorphous solids are characterized by internal states between which they can make transitions, and that structural evolution is driven by dissipation associated with plastic deformation. We present a rather extensive theoretical analysis of the thermodynamic shear-transformation-zone model for a variable-amplitude oscillatory shear protocol, highlighting its success in accounting for various experimental and simulational observations, as well as its limitations. Our results offer a continuum-level theoretical framework for interpreting the variable-amplitude oscillatory shear response of amorphous solids and may promote additional developments.

摘要

可变振幅振荡剪切试验正在成为研究和量化非晶态固体、复杂流体及生物材料非线性流变学的有力工具。最近不少实验和原子模拟研究表明,在低剪切振幅下,非晶态固体会进入一个依赖于振幅和初始条件的耗散极限环,在这个极限环中,来回的局部粒子重排会周期性地使系统回到相同状态。在足够大的剪切振幅下,非晶态系统会失去对初始条件的记忆,呈现出伴有扩散行为的混沌粒子运动,并进入一个随机稳态。这两种状态由一个转变振幅分隔开,这个转变振幅可能具有一些类似临界的特征。在此我们认为,这些观察结果支持了非平衡热力学、基于内变量的非晶态粘塑性剪切转变区模型中所体现的一些物理假设;最显著的是,非晶态固体中的“流动缺陷”由它们能够在其间发生转变的内部状态来表征,并且结构演化是由与塑性变形相关的耗散驱动的。我们对可变振幅振荡剪切协议的热力学剪切转变区模型进行了相当广泛的理论分析,突出了其在解释各种实验和模拟观察结果方面的成功之处以及局限性。我们的结果为解释非晶态固体的可变振幅振荡剪切响应提供了一个连续介质层面的理论框架,并可能推动进一步的发展。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验