Regev Ido, Weber John, Reichhardt Charles, Dahmen Karin A, Lookman Turab
School of Engineering and Applied Sciences, Harvard University, 29 Oxford Street, Cambridge, Massachusetts 02138, USA.
Center for Nonlinear Studies and Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA.
Nat Commun. 2015 Nov 13;6:8805. doi: 10.1038/ncomms9805.
The physical processes governing the onset of yield, where a material changes its shape permanently under external deformation, are not yet understood for amorphous solids that are intrinsically disordered. Here, using molecular dynamics simulations and mean-field theory, we show that at a critical strain amplitude the sizes of clusters of atoms undergoing cooperative rearrangements of displacements (avalanches) diverges. We compare this non-equilibrium critical behaviour to the prevailing concept of a 'front depinning' transition that has been used to describe steady-state avalanche behaviour in different materials. We explain why a depinning-like process can result in a transition from periodic to chaotic behaviour and why chaotic motion is not possible in pinned systems. These findings suggest that, at least for highly jammed amorphous systems, the irreversibility transition may be a side effect of depinning that occurs in systems where the disorder is not quenched.
对于本质上无序的非晶态固体,在外部变形下材料发生永久形状变化时所遵循的屈服起始物理过程仍未被理解。在此,我们使用分子动力学模拟和平均场理论表明,在临界应变幅度下,经历位移协同重排(雪崩)的原子团簇尺寸会发散。我们将这种非平衡临界行为与用于描述不同材料中稳态雪崩行为的“前沿脱钉”转变这一主流概念进行比较。我们解释了为何类似脱钉的过程会导致从周期性行为向混沌行为的转变,以及为何在钉扎系统中不可能出现混沌运动。这些发现表明,至少对于高度堵塞的非晶态系统,不可逆转变可能是在无序未被淬灭的系统中发生的脱钉的一种副作用。