Suppr超能文献

胫骨结节重新定位的动态模拟:模型评估

Dynamic simulation of tibial tuberosity realignment: model evaluation.

作者信息

Purevsuren Tserenchimed, Elias John J, Kim Kyungsoo, Kim Yoon Hyuk

机构信息

a Department of Mechanical Engineering , Kyung Hee University , Yongin , South Korea.

出版信息

Comput Methods Biomech Biomed Engin. 2015;18(14):1606-10. doi: 10.1080/10255842.2014.936857. Epub 2014 Jul 15.

Abstract

This study was performed to evaluate a dynamic multibody model developed to characterize the influence of tibial tuberosity realignment procedures on patellofemoral motion and loading. Computational models were created to represent four knees previously tested at 40°, 60°, and 80° of flexion with the tibial tuberosity in a lateral, medial and anteromedial positions. The experimentally loaded muscles, major ligaments of the knee, and patellar tendon were represented. A repeated measures ANOVA with post-hoc testing was performed at each flexion angle to compare data between the three positions of the tibial tuberosity. Significant experimental trends for decreased patella flexion due to tuberosity anteriorization and a decrease in the lateral contact force due to tuberosity medialization were reproduced computationally. The dynamic multibody modeling technique will allow simulation of function for symptomatic knees to identify optimal surgical treatment methods based on parameters related to knee pathology and pre-operative kinematics.

摘要

本研究旨在评估一个动态多体模型,该模型用于描述胫骨结节重新定位手术对髌股关节运动和负荷的影响。创建了计算模型来代表四个膝关节,这些膝关节先前在屈曲40°、60°和80°时进行过测试,胫骨结节分别处于外侧、内侧和前内侧位置。模型中包含了实验加载的肌肉、膝关节的主要韧带和髌腱。在每个屈曲角度进行重复测量方差分析及事后检验,以比较胫骨结节三个位置之间的数据。通过计算再现了由于结节前移导致髌骨屈曲减少以及由于结节内移导致外侧接触力降低的显著实验趋势。动态多体建模技术将允许对有症状的膝关节功能进行模拟,以便根据与膝关节病理和术前运动学相关的参数确定最佳手术治疗方法。

相似文献

1
Dynamic simulation of tibial tuberosity realignment: model evaluation.
Comput Methods Biomech Biomed Engin. 2015;18(14):1606-10. doi: 10.1080/10255842.2014.936857. Epub 2014 Jul 15.
2
Computational simulation of medial versus anteromedial tibial tuberosity transfer for patellar instability.
J Orthop Res. 2018 Dec;36(12):3231-3238. doi: 10.1002/jor.24108. Epub 2018 Aug 2.
3
The effect of tibial tuberosity realignment procedures on the patellofemoral pressure distribution.
Knee Surg Sports Traumatol Arthrosc. 2012 Oct;20(10):2054-61. doi: 10.1007/s00167-011-1802-8. Epub 2011 Dec 2.
4
Tibial tuberosity osteotomy for patellofemoral realignment alters tibiofemoral kinematics.
Am J Sports Med. 2011 May;39(5):1024-31. doi: 10.1177/0363546510390188. Epub 2011 Jan 13.
6
Variations in kinematics and function following patellar stabilization including tibial tuberosity realignment.
Knee Surg Sports Traumatol Arthrosc. 2014 Oct;22(10):2350-6. doi: 10.1007/s00167-014-2905-9. Epub 2014 Feb 15.
7
The biomechanics of the human patella during passive knee flexion.
J Biomech. 1995 Nov;28(11):1265-79. doi: 10.1016/0021-9290(95)00059-q.
9
Biomechanical Analysis of Tibial Tuberosity Medialization and Medial Patellofemoral Ligament Reconstruction.
Sports Med Arthrosc Rev. 2017 Jun;25(2):58-63. doi: 10.1097/JSA.0000000000000152.

引用本文的文献

2
Lateral patellar maltracking due to trochlear dysplasia: A computational study.
Knee. 2019 Dec;26(6):1234-1242. doi: 10.1016/j.knee.2019.11.006. Epub 2019 Nov 28.
4
Computational simulation of medial versus anteromedial tibial tuberosity transfer for patellar instability.
J Orthop Res. 2018 Dec;36(12):3231-3238. doi: 10.1002/jor.24108. Epub 2018 Aug 2.
5
7
Biomechanical Analysis of Tibial Tuberosity Medialization and Medial Patellofemoral Ligament Reconstruction.
Sports Med Arthrosc Rev. 2017 Jun;25(2):58-63. doi: 10.1097/JSA.0000000000000152.
8
Dynamic Simulation of the Effects of Graft Fixation Errors During Medial Patellofemoral Ligament Reconstruction.
Orthop J Sports Med. 2016 Sep 20;4(9):2325967116665080. doi: 10.1177/2325967116665080. eCollection 2016 Sep.

本文引用的文献

1
Variations in kinematics and function following patellar stabilization including tibial tuberosity realignment.
Knee Surg Sports Traumatol Arthrosc. 2014 Oct;22(10):2350-6. doi: 10.1007/s00167-014-2905-9. Epub 2014 Feb 15.
3
Contribution of posterolateral corner structures to knee joint translational and rotational stabilities: a computational study.
Proc Inst Mech Eng H. 2013 Sep;227(9):968-75. doi: 10.1177/0954411913490456. Epub 2013 Jun 4.
5
Computational knee ligament modeling using experimentally determined zero-load lengths.
Open Biomed Eng J. 2012;6:33-41. doi: 10.2174/1874230001206010033. Epub 2012 Apr 2.
6
The effect of tibial tuberosity realignment procedures on the patellofemoral pressure distribution.
Knee Surg Sports Traumatol Arthrosc. 2012 Oct;20(10):2054-61. doi: 10.1007/s00167-011-1802-8. Epub 2011 Dec 2.
7
A multibody knee model with discrete cartilage prediction of tibio-femoral contact mechanics.
Comput Methods Biomech Biomed Engin. 2013;16(3):256-70. doi: 10.1080/10255842.2011.617004. Epub 2011 Oct 4.
8
Hamstrings loading contributes to lateral patellofemoral malalignment and elevated cartilage pressures: an in vitro study.
Clin Biomech (Bristol). 2011 Oct;26(8):841-6. doi: 10.1016/j.clinbiomech.2011.03.016. Epub 2011 May 4.
9
Tibial tuberosity osteotomy for patellofemoral realignment alters tibiofemoral kinematics.
Am J Sports Med. 2011 May;39(5):1024-31. doi: 10.1177/0363546510390188. Epub 2011 Jan 13.
10
Individuals with patellofemoral pain exhibit greater patellofemoral joint stress: a finite element analysis study.
Osteoarthritis Cartilage. 2011 Mar;19(3):287-94. doi: 10.1016/j.joca.2010.12.001. Epub 2010 Dec 21.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验