Suppr超能文献

在估计月经周期长度分布时考虑长度偏倚和选择效应。

Accounting for length-bias and selection effects in estimating the distribution of menstrual cycle length.

作者信息

Lum Kirsten J, Sundaram Rajeshwari, Louis Thomas A

机构信息

Division of Intramural Population Health Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, DHHS, Rockville, MD 20852, USA and Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA.

Division of Intramural Population Health Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, DHHS, Rockville, MD 20852, USA.

出版信息

Biostatistics. 2015 Jan;16(1):113-28. doi: 10.1093/biostatistics/kxu035. Epub 2014 Jul 14.

Abstract

Prospective pregnancy studies are a valuable source of longitudinal data on menstrual cycle length. However, care is needed when making inferences of such renewal processes. For example, accounting for the sampling plan is necessary for unbiased estimation of the menstrual cycle length distribution for the study population. If couples can enroll when they learn of the study as opposed to waiting for the start of a new menstrual cycle, then due to length-bias, the enrollment cycle will be stochastically larger than the general run of cycles, a typical property of prevalent cohort studies. Furthermore, the probability of enrollment can depend on the length of time since a woman's last menstrual period (a backward recurrence time), resulting in selection effects. We focus on accounting for length-bias and selection effects in the likelihood for enrollment menstrual cycle length, using a recursive two-stage approach wherein we first estimate the probability of enrollment as a function of the backward recurrence time and then use it in a likelihood with sampling weights that account for length-bias and selection effects. To broaden the applicability of our methods, we augment our model to incorporate a couple-specific random effect and time-independent covariate. A simulation study quantifies performance for two scenarios of enrollment probability when proper account is taken of sampling plan features. In addition, we estimate the probability of enrollment and the distribution of menstrual cycle length for the study population of the Longitudinal Investigation of Fertility and the Environment Study.

摘要

前瞻性妊娠研究是获取月经周期长度纵向数据的宝贵来源。然而,在对这种更新过程进行推断时需要谨慎。例如,为了无偏估计研究人群的月经周期长度分布,必须考虑抽样计划。如果夫妇在得知研究时就可以报名参加,而不是等待新的月经周期开始,那么由于长度偏倚,入选周期将随机地长于一般的周期,这是现患队列研究的典型特征。此外,入选概率可能取决于自女性上次月经以来的时间长度(反向复发时间),从而产生选择效应。我们专注于在入选月经周期长度的似然性中考虑长度偏倚和选择效应,采用递归两阶段方法,其中我们首先估计入选概率作为反向复发时间的函数,然后将其用于带有考虑长度偏倚和选择效应的抽样权重的似然性中。为了拓宽我们方法的适用性,我们扩展模型以纳入夫妇特定的随机效应和与时间无关的协变量。一项模拟研究在适当考虑抽样计划特征的情况下,对两种入选概率情景下的性能进行了量化。此外,我们估计了生育与环境纵向研究的研究人群的入选概率和月经周期长度分布。

相似文献

2
Modeling menstrual cycle length using a mixture distribution.使用混合分布对月经周期长度进行建模。
Biostatistics. 2006 Jan;7(1):100-14. doi: 10.1093/biostatistics/kxi043. Epub 2005 Jul 14.
3
Menstrual cycle variability and the likelihood of achieving pregnancy.月经周期的可变性与妊娠的可能性。
Rev Environ Health. 2010 Oct-Dec;25(4):369-78. doi: 10.1515/reveh.2010.25.4.369.
10
How regular is regular? An analysis of menstrual cycle regularity.何为规律?月经周期规律性分析。
Contraception. 2004 Oct;70(4):289-92. doi: 10.1016/j.contraception.2004.04.012.

引用本文的文献

本文引用的文献

3
Persistent organochlorine pollutants and menstrual cycle characteristics.持久性有机污染物与月经周期特征。
Chemosphere. 2011 Dec;85(11):1742-8. doi: 10.1016/j.chemosphere.2011.09.027. Epub 2011 Oct 20.
6
Effective communication of standard errors and confidence intervals.标准误差和置信区间的有效传达。
Biostatistics. 2009 Jan;10(1):1-2. doi: 10.1093/biostatistics/kxn014. Epub 2008 Jun 10.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验