Suppr超能文献

一种用于网络安全的遗传流行病学方法。

A genetic epidemiology approach to cyber-security.

作者信息

Gil Santiago, Kott Alexander, Barabási Albert-László

机构信息

1] Center for Complex Network Research, Northeastern University, Boston, MA 02130, USA [2] Seed Scientific, New York, NY 10013.

Network Science Division, Army Research Laboratory, Adelphi, MD 20783, USA.

出版信息

Sci Rep. 2014 Jul 16;4:5659. doi: 10.1038/srep05659.

Abstract

While much attention has been paid to the vulnerability of computer networks to node and link failure, there is limited systematic understanding of the factors that determine the likelihood that a node (computer) is compromised. We therefore collect threat log data in a university network to study the patterns of threat activity for individual hosts. We relate this information to the properties of each host as observed through network-wide scans, establishing associations between the network services a host is running and the kinds of threats to which it is susceptible. We propose a methodology to associate services to threats inspired by the tools used in genetics to identify statistical associations between mutations and diseases. The proposed approach allows us to determine probabilities of infection directly from observation, offering an automated high-throughput strategy to develop comprehensive metrics for cyber-security.

摘要

虽然人们已高度关注计算机网络对节点和链路故障的脆弱性,但对于决定节点(计算机)被攻破可能性的因素,系统性的理解却很有限。因此,我们在一个大学网络中收集威胁日志数据,以研究单个主机的威胁活动模式。我们将这些信息与通过全网络扫描观察到的每个主机的属性相关联,建立主机运行的网络服务与其易受的威胁类型之间的关联。我们提出一种方法,该方法受遗传学中用于识别突变与疾病之间统计关联的工具启发,将服务与威胁相关联。所提出的方法使我们能够直接从观察中确定感染概率,提供一种自动化的高通量策略来制定全面的网络安全指标。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/725e/4100021/6b2f2af99851/srep05659-f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验