Suppr超能文献

网络攻击的时空模式与可预测性。

Spatiotemporal patterns and predictability of cyberattacks.

作者信息

Chen Yu-Zhong, Huang Zi-Gang, Xu Shouhuai, Lai Ying-Cheng

机构信息

School of Electrical, Computer and Energy Engineering, Arizona State University, Tempe, Arizona 85287, USA.

School of Electrical, Computer and Energy Engineering, Arizona State University, Tempe, Arizona 85287, USA; Institute of Computational Physics and Complex Systems, Lanzhou University, Lanzhou Gansu 730000, China.

出版信息

PLoS One. 2015 May 20;10(5):e0124472. doi: 10.1371/journal.pone.0124472. eCollection 2015.

Abstract

A relatively unexplored issue in cybersecurity science and engineering is whether there exist intrinsic patterns of cyberattacks. Conventional wisdom favors absence of such patterns due to the overwhelming complexity of the modern cyberspace. Surprisingly, through a detailed analysis of an extensive data set that records the time-dependent frequencies of attacks over a relatively wide range of consecutive IP addresses, we successfully uncover intrinsic spatiotemporal patterns underlying cyberattacks, where the term "spatio" refers to the IP address space. In particular, we focus on analyzing macroscopic properties of the attack traffic flows and identify two main patterns with distinct spatiotemporal characteristics: deterministic and stochastic. Strikingly, there are very few sets of major attackers committing almost all the attacks, since their attack "fingerprints" and target selection scheme can be unequivocally identified according to the very limited number of unique spatiotemporal characteristics, each of which only exists on a consecutive IP region and differs significantly from the others. We utilize a number of quantitative measures, including the flux-fluctuation law, the Markov state transition probability matrix, and predictability measures, to characterize the attack patterns in a comprehensive manner. A general finding is that the attack patterns possess high degrees of predictability, potentially paving the way to anticipating and, consequently, mitigating or even preventing large-scale cyberattacks using macroscopic approaches.

摘要

网络安全科学与工程中一个相对未被充分探索的问题是,是否存在网络攻击的内在模式。由于现代网络空间极其复杂,传统观点认为不存在这样的模式。令人惊讶的是,通过对一个广泛数据集的详细分析,该数据集记录了相对广泛的连续IP地址上随时间变化的攻击频率,我们成功地发现了网络攻击背后的内在时空模式,其中“时空”一词指的是IP地址空间。具体而言,我们专注于分析攻击流量的宏观特性,并识别出两种具有不同时空特征的主要模式:确定性模式和随机性模式。引人注目的是,几乎所有攻击都是由极少数主要攻击者实施的,因为根据非常有限的独特时空特征,可以明确识别出他们的攻击“指纹”和目标选择方案,每个特征仅存在于一个连续的IP区域,且彼此差异显著。我们使用了多种定量方法,包括通量波动定律、马尔可夫状态转移概率矩阵和可预测性度量,以全面刻画攻击模式。一个普遍的发现是,攻击模式具有高度的可预测性,这可能为使用宏观方法预测、进而减轻甚至防止大规模网络攻击铺平道路。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/14b7/4439157/a3ff5763e773/pone.0124472.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验