Suppr超能文献

揭示螺旋神经节神经元放电动力学的膜电位和神经营养因子-3

Unmasking of spiral ganglion neuron firing dynamics by membrane potential and neurotrophin-3.

机构信息

Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, New Jersey 08854.

Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, New Jersey 08854

出版信息

J Neurosci. 2014 Jul 16;34(29):9688-702. doi: 10.1523/JNEUROSCI.4552-13.2014.

Abstract

Type I spiral ganglion neurons have a unique role relative to other sensory afferents because, as a single population, they must convey the richness, complexity, and precision of auditory information as they shape signals transmitted to the brain. To understand better the sophistication of spiral ganglion response properties, we compared somatic whole-cell current-clamp recordings from basal and apical neurons obtained during the first 2 postnatal weeks from CBA/CaJ mice. We found that during this developmental time period neuron response properties changed from uniformly excitable to differentially plastic. Low-frequency, apical and high-frequency basal neurons at postnatal day 1 (P1)-P3 were predominantly slowly accommodating (SA), firing at low thresholds with little alteration in accommodation response mode induced by changes in resting membrane potential (RMP) or added neurotrophin-3 (NT-3). In contrast, P10-P14 apical and basal neurons were predominately rapidly accommodating (RA), had higher firing thresholds, and responded to elevation of RMP and added NT-3 by transitioning to the SA category without affecting the instantaneous firing rate. Therefore, older neurons appeared to be uniformly less excitable under baseline conditions yet displayed a previously unrecognized capacity to change response modes dynamically within a remarkably stable accommodation framework. Because the soma is interposed in the signal conduction pathway, these specializations can potentially lead to shaping and filtering of the transmitted signal. These results suggest that spiral ganglion neurons possess electrophysiological mechanisms that enable them to adapt their response properties to the characteristics of incoming stimuli and thus have the capacity to encode a wide spectrum of auditory information.

摘要

I 型螺旋神经节神经元在传递听觉信息方面具有独特的作用,因为作为一个单一的群体,它们必须在向大脑传递信号的过程中传递听觉信息的丰富性、复杂性和精确性。为了更好地理解螺旋神经节反应特性的复杂性,我们比较了 CBA/CaJ 小鼠出生后第 1 至 2 周基底和顶端神经元的体细胞全细胞电流钳记录。我们发现,在这段发育时期,神经元的反应特性从均匀兴奋转变为差异可塑性。出生后第 1 至 3 天(P1-P3)的低频、顶端和高频基底神经元主要是缓慢适应(SA),在静息膜电位(RMP)或添加神经营养因子-3(NT-3)变化时,以低阈值发射,适应反应模式变化很小。相比之下,P10-P14 的顶端和基底神经元主要是快速适应(RA),具有较高的发射阈值,并且对 RMP 的升高和添加 NT-3 的反应是通过转换为 SA 类别而不影响瞬时发射率。因此,年龄较大的神经元在基线条件下似乎兴奋性普遍较低,但表现出以前未被认识到的在非常稳定的适应框架内动态改变反应模式的能力。由于胞体位于信号传导途径中,这些特化可能导致信号的塑造和滤波。这些结果表明,螺旋神经节神经元具有使其能够适应传入刺激特征的电生理机制,从而具有编码广泛听觉信息的能力。

相似文献

1
Unmasking of spiral ganglion neuron firing dynamics by membrane potential and neurotrophin-3.
J Neurosci. 2014 Jul 16;34(29):9688-702. doi: 10.1523/JNEUROSCI.4552-13.2014.
2
Heterogeneous intrinsic excitability of murine spiral ganglion neurons is determined by Kv1 and HCN channels.
Neuroscience. 2014 Jan 17;257:96-110. doi: 10.1016/j.neuroscience.2013.10.065. Epub 2013 Nov 4.
4
Complex regulation of spiral ganglion neuron firing patterns by neurotrophin-3.
J Neurosci. 2005 Aug 17;25(33):7558-66. doi: 10.1523/JNEUROSCI.1735-05.2005.
5
Firing patterns of type II spiral ganglion neurons in vitro.
J Neurosci. 2004 Jan 21;24(3):733-42. doi: 10.1523/JNEUROSCI.3923-03.2004.
7
Regional specification of threshold sensitivity and response time in CBA/CaJ mouse spiral ganglion neurons.
J Neurophysiol. 2007 Oct;98(4):2215-22. doi: 10.1152/jn.00284.2007. Epub 2007 Aug 22.
8
Endogenous firing patterns of murine spiral ganglion neurons.
J Neurophysiol. 1997 Mar;77(3):1294-305. doi: 10.1152/jn.1997.77.3.1294.
9
Dendrotoxin-sensitive K(+) currents contribute to accommodation in murine spiral ganglion neurons.
J Physiol. 2002 Aug 1;542(Pt 3):763-78. doi: 10.1113/jphysiol.2002.017202.

引用本文的文献

1
Bridging the gap between presynaptic hair cell function and neural sound encoding.
Elife. 2024 Dec 24;12:RP93749. doi: 10.7554/eLife.93749.
2
Auditory hair cells and spiral ganglion neurons regenerate synapses with refined release properties in vitro.
Proc Natl Acad Sci U S A. 2024 Jul 30;121(31):e2315599121. doi: 10.1073/pnas.2315599121. Epub 2024 Jul 26.
4
Diversity matters - extending sound intensity coding by inner hair cells via heterogeneous synapses.
EMBO J. 2023 Dec 1;42(23):e114587. doi: 10.15252/embj.2023114587. Epub 2023 Oct 6.
5
Amplification of input differences by dynamic heterogeneity in the spiral ganglion.
J Neurophysiol. 2022 May 1;127(5):1317-1333. doi: 10.1152/jn.00544.2021. Epub 2022 Apr 7.
6
Regulation of Spiral Ganglion Neuron Regeneration as a Therapeutic Strategy in Sensorineural Hearing Loss.
Front Mol Neurosci. 2022 Jan 20;14:829564. doi: 10.3389/fnmol.2021.829564. eCollection 2021.
7
Similarities in the Biophysical Properties of Spiral-Ganglion and Vestibular-Ganglion Neurons in Neonatal Rats.
Front Neurosci. 2021 Oct 12;15:710275. doi: 10.3389/fnins.2021.710275. eCollection 2021.
8
Dynamic Heterogeneity Shapes Patterns of Spiral Ganglion Activity.
J Neurosci. 2021 Oct 27;41(43):8859-8875. doi: 10.1523/JNEUROSCI.0924-20.2021. Epub 2021 Sep 22.
9
Analog transmission of action potential fine structure in spiral ganglion axons.
J Neurophysiol. 2021 Sep 1;126(3):888-905. doi: 10.1152/jn.00237.2021. Epub 2021 Aug 4.
10
Relationships between Intrascalar Tissue, Neuron Survival, and Cochlear Implant Function.
J Assoc Res Otolaryngol. 2020 Aug;21(4):337-352. doi: 10.1007/s10162-020-00761-4. Epub 2020 Jul 20.

本文引用的文献

1
Heterogeneous intrinsic excitability of murine spiral ganglion neurons is determined by Kv1 and HCN channels.
Neuroscience. 2014 Jan 17;257:96-110. doi: 10.1016/j.neuroscience.2013.10.065. Epub 2013 Nov 4.
2
Functional contributions of HCN channels in the primary auditory neurons of the mouse inner ear.
J Gen Physiol. 2013 Sep;142(3):207-23. doi: 10.1085/jgp.201311019.
4
Kv1.1 channels act as mechanical brake in the senses of touch and pain.
Neuron. 2013 Mar 6;77(5):899-914. doi: 10.1016/j.neuron.2012.12.035.
5
Posthearing Ca(2+) currents and their roles in shaping the different modes of firing of spiral ganglion neurons.
J Neurosci. 2012 Nov 14;32(46):16314-30. doi: 10.1523/JNEUROSCI.2097-12.2012.
6
Embryonic assembly of auditory circuits: spiral ganglion and brainstem.
J Physiol. 2012 May 15;590(10):2391-408. doi: 10.1113/jphysiol.2011.226886. Epub 2012 Feb 27.
8
Complex distribution patterns of voltage-gated calcium channel α-subunits in the spiral ganglion.
Hear Res. 2011 Aug;278(1-2):52-68. doi: 10.1016/j.heares.2011.01.016. Epub 2011 Jan 31.
9
Sensitivity and selectivity of neurons in auditory cortex to the pitch, timbre, and location of sounds.
Neuroscientist. 2010 Aug;16(4):453-69. doi: 10.1177/1073858410371009. Epub 2010 Jun 7.
10
Going native: voltage-gated potassium channels controlling neuronal excitability.
J Physiol. 2010 Sep 1;588(Pt 17):3187-200. doi: 10.1113/jphysiol.2010.191973. Epub 2010 Jun 2.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验