Suppr超能文献

小鼠螺旋神经节神经元的放电特征和钾通道含量随耳蜗位置而异。

Firing features and potassium channel content of murine spiral ganglion neurons vary with cochlear location.

作者信息

Adamson Crista L, Reid Michael A, Mo Zun-Li, Bowne-English Janet, Davis Robin L

机构信息

W.M. Keck Center for Collaborative Neuroscience, Rutgers University, Piscataway, New Jersey, 08854-8082, USA.

出版信息

J Comp Neurol. 2002 Jun 10;447(4):331-50. doi: 10.1002/cne.10244.

Abstract

Neurons from varied regions of the central nervous system can show widely divergent responses to electrical stimuli that are determined by cell-specific differences in ion channel composition. The well-ordered and highly characterized peripheral auditory system allows one to explore the significance of this diversity during the final stages of postnatal development. We examined the electrophysiological features of murine spiral ganglion neurons in vitro at a time when recordings could be made from the cell bodies before myelination. These cells carry information about sound stimuli from hair cell receptors in the basilar membrane and are arranged tonotopically. Spiral ganglion neuron responses to depolarizing current injection were assessed with whole-cell current clamp recordings from cells that were isolated separately from the apical and basal thirds of the mouse cochlea. These cells displayed systematic variation in their firing. Apex neurons (low frequency coding) showed longer latency, slowly adapting responses, whereas base neurons (high frequency coding) showed short latency, rapidly adapting responses to the same stimuli. This physiological diversity was mirrored by regional differences in ion channel content assessed immunohistochemically. Apex neurons had a preponderance of Kv4.2 subunits, whereas base neurons possessed greater levels of K(Ca), Kv1.1, and Kv3.1 subunits. Taken together, these results indicate that the distribution of a set of voltage-gated potassium channels may relate specifically to a particular range of coding frequencies. These studies also suggest that intrinsic properties of spiral ganglion neurons can contribute to the characteristic responses of the peripheral auditory system. Their potential role in development and adult function is discussed.

摘要

来自中枢神经系统不同区域的神经元,对电刺激可表现出广泛不同的反应,这取决于离子通道组成上的细胞特异性差异。有序且特征明确的外周听觉系统,使人们能够在出生后发育的最后阶段探究这种多样性的意义。我们在体外研究了小鼠螺旋神经节神经元的电生理特征,此时可以在髓鞘形成之前从细胞体进行记录。这些细胞携带来自基底膜毛细胞感受器的声音刺激信息,并呈音调拓扑排列。使用全细胞电流钳记录,评估从小鼠耳蜗顶部和底部三分之一处单独分离出的细胞对去极化电流注入的螺旋神经节神经元反应。这些细胞在放电方面表现出系统性变化。顶部神经元(低频编码)表现出更长的潜伏期、缓慢适应的反应,而底部神经元(高频编码)对相同刺激表现出短潜伏期、快速适应的反应。通过免疫组织化学评估的离子通道含量的区域差异反映了这种生理多样性。顶部神经元有大量的Kv4.2亚基,而底部神经元有更高水平的K(Ca)、Kv1.1和Kv3.1亚基。综上所述,这些结果表明一组电压门控钾通道的分布可能与特定范围的编码频率具体相关。这些研究还表明螺旋神经节神经元的内在特性可能有助于外周听觉系统的特征性反应。讨论了它们在发育和成年功能中的潜在作用。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验