Reid Michael A, Flores-Otero Jacqueline, Davis Robin L
Department of Cell Biology and Neuroscience, Rutgers University, Nelson Laboratories, Piscataway, New Jersey 08854-8082, USA.
J Neurosci. 2004 Jan 21;24(3):733-42. doi: 10.1523/JNEUROSCI.3923-03.2004.
Type I and type II spiral ganglion neurons convey auditory information from the sensory receptors in the cochlea to the CNS. The numerous type I neurons have been extensively characterized, but the small population of type II neurons with their unmyelinated axons are undetectable with most recording methods. Despite the paucity of information about the type II neurons, it is clear that they must have a significant role in sound processing because they innervate the large number of outer hair cells that are critical for maintaining normal responses to stimuli. To elucidate the function of type II neurons, we have developed an approach for studying their electrophysiological features in vitro. Type II neurons obtained from postnatal day 6-7 mice displayed distinctly different firing properties than type I neurons. They showed slower accommodation, lower action potential thresholds, and more prolonged responses to depolarizing current injection than the type I neurons. These differences were most evident in neurons from the basal, high-frequency region of the cochlea. The basal type I neurons displayed uniformly fast firing features, whereas the basal type II neurons showed particularly slow accommodation and responses to depolarization. Interestingly, neurons from the apical, low-frequency region of the cochlea showed the opposite trend. These data suggest that the type I and type II neurons have specialized electrophysiological characteristics tailored to their different roles in auditory signal processing. In particular, the type II neuron properties are consistent with cells in other sensory systems that receive convergent synaptic input for high-sensitivity stimulus detection.
I型和II型螺旋神经节神经元将来自耳蜗感觉感受器的听觉信息传递至中枢神经系统。大量的I型神经元已得到广泛研究,但其数量较少且轴突无髓鞘的II型神经元在大多数记录方法下难以检测到。尽管关于II型神经元的信息匮乏,但很明显它们在声音处理中必定发挥着重要作用,因为它们支配着大量对维持正常刺激反应至关重要的外毛细胞。为阐明II型神经元的功能,我们开发了一种在体外研究其电生理特征的方法。从出生后第6 - 7天的小鼠获取的II型神经元表现出与I型神经元明显不同的放电特性。与I型神经元相比,它们表现出更慢的适应性、更低的动作电位阈值以及对去极化电流注入的反应更持久。这些差异在耳蜗基底高频区域的神经元中最为明显。基底I型神经元表现出一致的快速放电特征,而基底II型神经元表现出特别慢的适应性和对去极化的反应。有趣的是,耳蜗顶端低频区域的神经元呈现出相反的趋势。这些数据表明,I型和II型神经元具有专门的电生理特征,以适应它们在听觉信号处理中的不同作用。特别是,II型神经元的特性与其他感觉系统中为高灵敏度刺激检测而接受汇聚突触输入的细胞一致。