Department of Neuroscience and Physiology Graduate Training Program, University of Wisconsin-Madison, Madison, Wisconsin 53706.
Department of Neuroscience and Physiology Graduate Training Program, University of Wisconsin-Madison, Madison, Wisconsin 53706
J Neurosci. 2014 Jul 16;34(29):9743-53. doi: 10.1523/JNEUROSCI.0814-14.2014.
The dentate gyrus serves as a gateway to the hippocampus, filtering and processing sensory inputs as an animal explores its environment. The hilus occupies a strategic position within the dentate gyrus from which it can play a pivotal role in these functions. Inputs from dentate granule cells converge on the hilus, and excitatory hilar mossy cells redistribute these signals back to granule cells to transform a pattern of cortical input into a new pattern of output to the hippocampal CA3 region. Using voltage-sensitive dye to image electrical activity in rat hippocampal slices, we explored how long-term potentiation (LTP) of different excitatory synapses modifies the flow of information. Theta burst stimulation of the perforant path potentiated responses throughout the molecular layer, but left responses in the CA3 region unchanged. By contrast, theta burst stimulation of the granule cell layer potentiated responses throughout the molecular layer, as well as in the CA3 region. Theta burst stimulation of the granule cell layer potentiated CA3 responses not only to granule cell layer stimulation but also to perforant path stimulation. Potentiation of responses in the CA3 region reflected NMDA receptor-dependent LTP of upstream synapses between granule cells and mossy cells, with no detectable contribution from NMDA receptor-independent LTP of local CA3 mossy fiber synapses. Potentiation of transmission to the CA3 region required LTP in both granule cell→mossy cell and mossy cell→granule cell synapses. This bidirectional plasticity enables hilar circuitry to regulate the flow of information through the dentate gyrus and on to the hippocampus.
齿状回作为海马体的门户,在动物探索环境时过滤和处理感觉输入。门区在齿状回中占据着战略位置,它可以在这些功能中发挥关键作用。来自齿状回颗粒细胞的输入汇聚在门区,兴奋性门区苔藓状细胞将这些信号重新分配到颗粒细胞,将皮质输入的模式转化为向海马 CA3 区的新输出模式。我们使用电压敏感染料对大鼠海马切片中的电活动进行成像,以探索不同兴奋性突触的长时程增强(LTP)如何改变信息的流动。在海马体中,通过θ爆发刺激穿通通路可以增强整个分子层的反应,但对 CA3 区的反应没有影响。相比之下,通过θ爆发刺激颗粒细胞层可以增强整个分子层以及 CA3 区的反应。θ爆发刺激颗粒细胞层不仅可以增强对颗粒细胞层刺激的 CA3 反应,还可以增强对穿通通路刺激的 CA3 反应。CA3 区反应的增强反映了颗粒细胞和苔藓状细胞之间上游突触的 NMDA 受体依赖性 LTP,而 NMDA 受体非依赖性局部 CA3 苔藓状纤维突触的 LTP 没有可检测到的贡献。向 CA3 区的传递增强需要颗粒细胞→苔藓状细胞和苔藓状细胞→颗粒细胞突触中的 LTP。这种双向可塑性使门区电路能够调节信息在齿状回中的流动,并传递到海马体。