Department of Medicine, University of Verona School of Medicine, Verona, Italy.
Department of Medicine, University of Verona School of Medicine, Verona, Italy; Departamento de Endocrinología, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile.
Transl Res. 2015 Jan;165(1):154-65. doi: 10.1016/j.trsl.2014.06.007. Epub 2014 Jun 25.
Epigenetic phenomena include DNA methylation, post-translational histone modifications, and noncoding RNAs, as major marks. Although similar to genetic features of DNA for their heritability, epigenetic mechanisms differ for their potential reversibility by environmental and nutritional factors, which make them potentially crucial for their role in complex and multifactorial diseases. The function of these mechanisms is indeed gaining interest in relation to arterial hypertension (AH) with emerging evidence from cell culture and animal models as well as human studies showing that epigenetic modifications have major functions within pathways related to AH. Among epigenetic marks, the role of DNA methylation is mostly highlighted given the primary role of this epigenetic feature in mammalian cells. A lower global methylation was observed in DNA of peripheral blood mononuclear cells of hypertensive patients. Moreover, DNA hydroxymethylation appears modifiable by salt intake in a Dahl salt-sensitive rat model. The specific function of DNA methylation in regulating the expression of AH-related genes at promoter site was described for hydroxysteroid (11-beta) dehydrogenase 2 (HSD11B2), somatic angiotensin converting enzyme (sACE), Na+/K+/2Cl- cotransporter 1 (NKCC1), angiotensinogen (AGT), α-adducin (ADD1), and for other crucial genes in endocrine hypertension. Post-translational histone methylation at different histone 3 lysine residues was also observed to control the expression of genes related to AH as lysine-specific demethylase-1(LSD1), HSD11B2, and epithelial sodium channel subunit α (SCNN1A). Noncoding RNAs including several microRNAs influence genes involved in steroidogenesis and the renin-angiotensin-aldosterone pathway. In the present review, the current knowledge on the relationship between the main epigenetic marks and AH will be presented, considering the challenge of epigenetic patterns being modifiable by environmental factors that may lead toward novel implications in AH preventive and therapeutic strategies.
表观遗传现象包括 DNA 甲基化、组蛋白翻译后修饰和非编码 RNA,它们是主要的标记物。尽管与 DNA 的遗传特征相似,但表观遗传机制因其可被环境和营养因素逆转而有所不同,这使得它们在复杂和多因素疾病中具有潜在的重要作用。这些机制的功能确实引起了人们的兴趣,与动脉高血压(AH)相关的证据来自细胞培养和动物模型以及人类研究,表明表观遗传修饰在与 AH 相关的途径中具有重要功能。在表观遗传标记中,DNA 甲基化的作用最为突出,因为这种表观遗传特征在哺乳动物细胞中起着主要作用。高血压患者外周血单个核细胞的 DNA 中观察到整体甲基化水平降低。此外,在 Dahl 盐敏感型大鼠模型中,DNA 羟甲基化似乎可被盐摄入所改变。DNA 甲基化在调节与 AH 相关基因启动子位点表达的特定功能,在羟甾类 11-β 脱氢酶 2(HSD11B2)、体细胞血管紧张素转换酶(sACE)、Na+/K+/2Cl-共转运蛋白 1(NKCC1)、血管紧张素原(AGT)、α-辅肌动蛋白(ADD1)和其他在内分泌性高血压中至关重要的基因中被描述。在不同组蛋白 3 赖氨酸残基上的组蛋白翻译后甲基化也被观察到可控制与 AH 相关的基因表达,如赖氨酸特异性去甲基酶-1(LSD1)、HSD11B2 和上皮钠通道亚单位α(SCNN1A)。非编码 RNA 包括几种 microRNA 影响参与类固醇生成和肾素-血管紧张素-醛固酮途径的基因。在本综述中,将介绍主要表观遗传标记物与 AH 之间的关系的最新知识,考虑到表观遗传模式可被环境因素改变的挑战,这可能会对 AH 的预防和治疗策略产生新的影响。