Morton Taj, Petricka Jalean, Corcoran David L, Li Song, Winter Cara M, Carda Alexa, Benfey Philip N, Ohler Uwe, Megraw Molly
Department of Electrical Engineering and Computer Science, Oregon State University, Corvallis, Oregon 97331.
Institute for Genome Sciences and Policy, Duke University, Durham, North Carolina 27708 Department of Biology, HHMI and Center for Systems Biology, Duke University, Durham, North Carolina 27708 Department of Biology, Carleton College, Northfield, Minnesota 55057.
Plant Cell. 2014 Jul;26(7):2746-60. doi: 10.1105/tpc.114.125617. Epub 2014 Jul 17.
Understanding plant gene promoter architecture has long been a challenge due to the lack of relevant large-scale data sets and analysis methods. Here, we present a publicly available, large-scale transcription start site (TSS) data set in plants using a high-resolution method for analysis of 5' ends of mRNA transcripts. Our data set is produced using the paired-end analysis of transcription start sites (PEAT) protocol, providing millions of TSS locations from wild-type Columbia-0 Arabidopsis thaliana whole root samples. Using this data set, we grouped TSS reads into "TSS tag clusters" and categorized clusters into three spatial initiation patterns: narrow peak, broad with peak, and weak peak. We then designed a machine learning model that predicts the presence of TSS tag clusters with outstanding sensitivity and specificity for all three initiation patterns. We used this model to analyze the transcription factor binding site content of promoters exhibiting these initiation patterns. In contrast to the canonical notions of TATA-containing and more broad "TATA-less" promoters, the model shows that, in plants, the vast majority of transcription start sites are TATA free and are defined by a large compendium of known DNA sequence binding elements. We present results on the usage of these elements and provide our Plant PEAT Peaks (3PEAT) model that predicts the presence of TSSs directly from sequence.
由于缺乏相关的大规模数据集和分析方法,长期以来,了解植物基因启动子结构一直是一项挑战。在此,我们使用一种高分辨率方法来分析mRNA转录本的5'端,从而呈现了一个公开可用的植物大规模转录起始位点(TSS)数据集。我们的数据集是使用转录起始位点配对末端分析(PEAT)方案生成的,提供了来自野生型哥伦比亚-0拟南芥全根样本的数百万个TSS位置。利用这个数据集,我们将TSS读数分组为“TSS标签簇”,并将簇分类为三种空间起始模式:窄峰、宽峰带尖峰和弱峰。然后,我们设计了一个机器学习模型,该模型对所有三种起始模式都具有出色的敏感性和特异性来预测TSS标签簇的存在。我们使用这个模型来分析呈现这些起始模式的启动子的转录因子结合位点内容。与含TATA和更宽泛的“无TATA”启动子的传统概念相反,该模型表明,在植物中,绝大多数转录起始位点是无TATA的,并且由大量已知的DNA序列结合元件定义。我们展示了这些元件的使用结果,并提供了我们的植物PEAT峰(3PEAT)模型,该模型可直接从序列预测TSS的存在。