Suppr超能文献

弹性、导电聚合物水凝胶和海绵。

Elastic, conductive, polymeric hydrogels and sponges.

作者信息

Lu Yun, He Weina, Cao Tai, Guo Haitao, Zhang Yongyi, Li Qingwen, Shao Ziqiang, Cui Yulin, Zhang Xuetong

机构信息

1] School of Materials Science & Engineering, Beijing Institute of Technology, Beijing 100081, P. R. China [2].

1] Suzhou Institute of Nano-tech & Nano-bionics, Chinese Academy of Sciences, Suzhou, 215123, P. R.China [2].

出版信息

Sci Rep. 2014 Jul 23;4:5792. doi: 10.1038/srep05792.

Abstract

As a result of inherent rigidity of the conjugated macromolecular chains resulted from the delocalized π-electron system along the polymer backbone, it has been a huge challenge to make conducting polymer hydrogels elastic by far. Herein elastic and conductive polypyrrole hydrogels with only conducting polymer as the continuous phase have been simply synthesized in the indispensable conditions of 1) mixed solvent, 2) deficient oxidant, and 3) monthly secondary growth. The elastic mechanism and oxidative polymerization mechanism on the resulting PPy hydrogels have been discussed. The resulting hydrogels show some novel properties, e.g., shape memory elasticity, fast functionalization with various guest objects, and fast removal of organic infectants from aqueous solutions, all of which cannot be observed from traditional non-elastic conducting polymer counterparts. What's more, light-weight, elastic, and conductive organic sponges with excellent stress-sensing behavior have been successfully achieved via using the resulting polypyrrole hydrogels as precursors.

摘要

由于沿着聚合物主链的离域π电子体系导致共轭大分子链具有固有的刚性,迄今为止,使导电聚合物水凝胶具有弹性一直是一项巨大的挑战。在此,仅以导电聚合物作为连续相的弹性导电聚吡咯水凝胶已在以下必不可少的条件下简单合成:1)混合溶剂,2)缺乏氧化剂,3)每月二次生长。已对所得聚吡咯水凝胶的弹性机制和氧化聚合机制进行了讨论。所得水凝胶表现出一些新颖的特性,例如形状记忆弹性、与各种客体快速功能化以及从水溶液中快速去除有机污染物,所有这些特性在传统的非弹性导电聚合物对应物中均未观察到。此外,通过使用所得的聚吡咯水凝胶作为前体,已成功制备出具有优异应力传感行为的轻质、弹性和导电有机海绵。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f219/4107344/af48e88c368c/srep05792-f1.jpg

相似文献

1
Elastic, conductive, polymeric hydrogels and sponges.
Sci Rep. 2014 Jul 23;4:5792. doi: 10.1038/srep05792.
2
Highly Conductive PPy-PEDOT:PSS Hybrid Hydrogel with Superior Biocompatibility for Bioelectronics Application.
ACS Appl Mater Interfaces. 2021 Jun 2;13(21):25374-25382. doi: 10.1021/acsami.1c04432. Epub 2021 May 19.
3
Elastomeric conductive hybrid hydrogels with continuous conductive networks.
J Mater Chem B. 2019 Apr 21;7(15):2389-2397. doi: 10.1039/c9tb00173e. Epub 2019 Mar 8.
4
Dopant-Enabled Supramolecular Approach for Controlled Synthesis of Nanostructured Conductive Polymer Hydrogels.
Nano Lett. 2015 Nov 11;15(11):7736-41. doi: 10.1021/acs.nanolett.5b03891. Epub 2015 Oct 27.
5
Soft-Templated Synthesis of Lightweight, Elastic, and Conductive Nanotube Aerogels.
ACS Appl Mater Interfaces. 2018 Oct 31;10(43):37426-37433. doi: 10.1021/acsami.8b14071. Epub 2018 Oct 17.
6
Tunable Three-Dimensional Nanostructured Conductive Polymer Hydrogels for Energy-Storage Applications.
ACS Appl Mater Interfaces. 2019 Jan 30;11(4):4258-4267. doi: 10.1021/acsami.8b19180. Epub 2019 Jan 17.
8
Design of Self-Healing and Electrically Conductive Silk Fibroin-Based Hydrogels.
ACS Appl Mater Interfaces. 2019 Jun 5;11(22):20394-20403. doi: 10.1021/acsami.9b04871. Epub 2019 May 24.
9
Microfibrillated cellulose enhancement to mechanical and conductive properties of biocompatible hydrogels.
Carbohydr Polym. 2019 Feb 1;205:244-254. doi: 10.1016/j.carbpol.2018.10.037. Epub 2018 Oct 15.

引用本文的文献

1
Controlled synthesis of noble metal aerogels mediated by salts.
Nat Protoc. 2025 Jun 10. doi: 10.1038/s41596-025-01185-1.
4
Seamless Integration of Conducting Hydrogels in Daily Life: From Preparation to Wearable Application.
Adv Sci (Weinh). 2024 Apr;11(13):e2306784. doi: 10.1002/advs.202306784. Epub 2024 Jan 19.
5
Recent Progress in Biomedical Sensors Based on Conducting Polymer Hydrogels.
ACS Appl Bio Mater. 2023 May 15;6(5):1720-1741. doi: 10.1021/acsabm.3c00139. Epub 2023 Apr 28.
10
Self-healing composite hydrogel with antibacterial and reversible restorability conductive properties.
RSC Adv. 2020 Jan 30;10(9):5050-5057. doi: 10.1039/d0ra00089b. eCollection 2020 Jan 29.

本文引用的文献

1
2
Nano-structured smart hydrogels with rapid response and high elasticity.
Nat Commun. 2013;4:2226. doi: 10.1038/ncomms3226.
3
Highly compression-tolerant supercapacitor based on polypyrrole-mediated graphene foam electrodes.
Adv Mater. 2013 Jan 25;25(4):591-5. doi: 10.1002/adma.201203578. Epub 2012 Oct 18.
4
Non-affine deformations in polymer hydrogels.
Soft Matter. 2012 Jan 1;8(31):8039-8049. doi: 10.1039/c2sm25364j. Epub 2012 May 11.
5
Highly stretchable and tough hydrogels.
Nature. 2012 Sep 6;489(7414):133-6. doi: 10.1038/nature11409.
6
Hierarchical nanostructured conducting polymer hydrogel with high electrochemical activity.
Proc Natl Acad Sci U S A. 2012 Jun 12;109(24):9287-92. doi: 10.1073/pnas.1202636109. Epub 2012 May 29.
8
Drug release from electric-field-responsive nanoparticles.
ACS Nano. 2012 Jan 24;6(1):227-33. doi: 10.1021/nn203430m. Epub 2011 Nov 30.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验