Suppr超能文献

计算血液动力学的拉格朗日后处理

Lagrangian postprocessing of computational hemodynamics.

作者信息

Shadden Shawn C, Arzani Amirhossein

机构信息

Department of Mechanical Engineering, University of California, 5126 Etcheverry Hall, Berkeley, CA , 94720-1740, USA,

出版信息

Ann Biomed Eng. 2015 Jan;43(1):41-58. doi: 10.1007/s10439-014-1070-0. Epub 2014 Jul 25.

Abstract

Recent advances in imaging, modeling, and computing have rapidly expanded our capabilities to model hemodynamics in the large vessels (heart, arteries, and veins). This data encodes a wealth of information that is often under-utilized. Modeling (and measuring) blood flow in the large vessels typically amounts to solving for the time-varying velocity field in a region of interest. Flow in the heart and larger arteries is often complex, and velocity field data provides a starting point for investigating the hemodynamics. This data can be used to perform Lagrangian particle tracking, and other Lagrangian-based postprocessing. As described herein, Lagrangian methods are necessary to understand inherently transient hemodynamic conditions from the fluid mechanics perspective, and to properly understand the biomechanical factors that lead to acute and gradual changes of vascular function and health. The goal of the present paper is to review Lagrangian methods that have been used in post-processing velocity data of cardiovascular flows.

摘要

成像、建模和计算方面的最新进展迅速扩展了我们对大血管(心脏、动脉和静脉)血流动力学进行建模的能力。这些数据编码了大量常常未得到充分利用的信息。对大血管中的血流进行建模(以及测量)通常相当于求解感兴趣区域内随时间变化的速度场。心脏和较大动脉中的血流通常很复杂,速度场数据为研究血流动力学提供了一个起点。该数据可用于进行拉格朗日粒子追踪以及其他基于拉格朗日的后处理。如本文所述,从流体力学角度理解固有瞬态血流动力学状况以及正确理解导致血管功能和健康发生急性和渐进性变化的生物力学因素,拉格朗日方法是必不可少的。本文的目的是综述已用于心血管血流速度数据后处理的拉格朗日方法。

相似文献

1
Lagrangian postprocessing of computational hemodynamics.
Ann Biomed Eng. 2015 Jan;43(1):41-58. doi: 10.1007/s10439-014-1070-0. Epub 2014 Jul 25.
3
Lagrangian analysis of hemodynamics data from FSI simulation.
Int J Numer Method Biomed Eng. 2013 Apr;29(4):445-61. doi: 10.1002/cnm.2523. Epub 2012 Oct 18.
4
Wall shear stress exposure time: a Lagrangian measure of near-wall stagnation and concentration in cardiovascular flows.
Biomech Model Mechanobiol. 2017 Jun;16(3):787-803. doi: 10.1007/s10237-016-0853-7. Epub 2016 Nov 17.
5
Spatiotemporal Hemodynamic Complexity in Carotid Arteries: An Integrated Computational Hemodynamics and Complex Networks-Based Approach.
IEEE Trans Biomed Eng. 2020 Jul;67(7):1841-1853. doi: 10.1109/TBME.2019.2949148. Epub 2019 Oct 23.
6
Characterization of coherent structures in the cardiovascular system.
Ann Biomed Eng. 2008 Jul;36(7):1152-62. doi: 10.1007/s10439-008-9502-3. Epub 2008 Apr 25.
7
Flow imaging and computing: large artery hemodynamics.
Ann Biomed Eng. 2005 Dec;33(12):1704-9. doi: 10.1007/s10439-005-8772-2.
8
Inter-Laboratory Characterization of the Velocity Field in the FDA Blood Pump Model Using Particle Image Velocimetry (PIV).
Cardiovasc Eng Technol. 2018 Dec;9(4):623-640. doi: 10.1007/s13239-018-00378-y. Epub 2018 Oct 5.

引用本文的文献

1
Optimizing distal and proximal splenic artery embolization with patient-specific computational fluid dynamics.
J Biomech. 2024 Nov;176:112320. doi: 10.1016/j.jbiomech.2024.112320. Epub 2024 Sep 12.
3
Modeling the Mechanical Microenvironment of Coiled Cerebral Aneurysms.
J Biomech Eng. 2023 Apr 1;145(4). doi: 10.1115/1.4055857.
4
On the Impact of Left Upper Lobectomy on the Left Atrial Hemodynamics.
Front Physiol. 2022 Feb 24;13:830436. doi: 10.3389/fphys.2022.830436. eCollection 2022.
5
Go with the FLOW: visualizing spatiotemporal dynamics in optical widefield calcium imaging.
J R Soc Interface. 2021 Aug;18(181):20210523. doi: 10.1098/rsif.2021.0523. Epub 2021 Aug 25.
6
Engineering Perspective on Cardiovascular Simulations of Fontan Hemodynamics: Where Do We Stand with a Look Towards Clinical Application.
Cardiovasc Eng Technol. 2021 Dec;12(6):618-630. doi: 10.1007/s13239-021-00541-y. Epub 2021 Jun 10.
7
Numerical models for assessing the risk of leaflet thrombosis post-transcatheter aortic valve-in-valve implantation.
R Soc Open Sci. 2020 Dec 23;7(12):201838. doi: 10.1098/rsos.201838. eCollection 2020 Dec.
8
Fluid-Structure Interaction Simulation of an Intra-Atrial Fontan Connection.
Biology (Basel). 2020 Nov 24;9(12):412. doi: 10.3390/biology9120412.
9
A Distributed Lumped Parameter Model of Blood Flow.
Ann Biomed Eng. 2020 Dec;48(12):2870-2886. doi: 10.1007/s10439-020-02545-6. Epub 2020 Jul 1.
10
Platelet activation via dynamic conformational changes of von Willebrand factor under shear.
PLoS One. 2020 Jun 11;15(6):e0234501. doi: 10.1371/journal.pone.0234501. eCollection 2020.

本文引用的文献

1
Flow of a blood analogue fluid in a compliant abdominal aortic aneurysm model: experimental modelling.
J Biomech. 2014 Apr 11;47(6):1262-9. doi: 10.1016/j.jbiomech.2014.02.026. Epub 2014 Feb 21.
2
Computational modelling of emboli travel trajectories in cerebral arteries: influence of microembolic particle size and density.
Biomech Model Mechanobiol. 2014 Apr;13(2):289-302. doi: 10.1007/s10237-014-0561-0. Epub 2014 Mar 2.
3
Effect of exercise on patient specific abdominal aortic aneurysm flow topology and mixing.
Int J Numer Method Biomed Eng. 2014 Feb;30(2):280-95. doi: 10.1002/cnm.2601. Epub 2013 Oct 28.
4
On the prediction of monocyte deposition in abdominal aortic aneurysms using computational fluid dynamics.
Proc Inst Mech Eng H. 2013 Oct;227(10):1114-24. doi: 10.1177/0954411913494319. Epub 2013 Jul 25.
5
Topology of blood transport in the human left ventricle by novel processing of Doppler echocardiography.
Ann Biomed Eng. 2013 Dec;41(12):2603-16. doi: 10.1007/s10439-013-0853-z. Epub 2013 Jul 2.
6
Size-dependent predilections of cardiogenic embolic transport.
Am J Physiol Heart Circ Physiol. 2013 Sep 1;305(5):H732-9. doi: 10.1152/ajpheart.00320.2013. Epub 2013 Jun 21.
7
Cardiovascular magnetic resonance: deeper insights through bioengineering.
Annu Rev Biomed Eng. 2013;15:433-61. doi: 10.1146/annurev-bioeng-071812-152346. Epub 2013 May 6.
8
Lagrangian analysis of hemodynamics data from FSI simulation.
Int J Numer Method Biomed Eng. 2013 Apr;29(4):445-61. doi: 10.1002/cnm.2523. Epub 2012 Oct 18.
9
Visual analysis of cardiac 4D MRI blood flow using line predicates.
IEEE Trans Vis Comput Graph. 2013 Jun;19(6):900-12. doi: 10.1109/TVCG.2012.318.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验